

PRELIMINARY SITE INVESTIGATION N09489

Bell Architecture Pty Ltd

PROPOSED DEVELOPMENT AT:

45 Orth Street,

Kingswood NSW 2747

24th July 2024

Report Distribution Preliminary Site Investigation Address: 45 Orth Street, Kingswood NSW 2747 Report No: N09489 Date: 24th July 2024 **Recipient/Custodian** Copies 1 Soft Copy (PDF) – Secured and issued by email Bell Architecture Pty Ltd 1 Original – Saved to NEO Consulting Archives Secured and Saved by NEO Consulting on Register. Version **Prepared by Reviewed by** Date issue Ehsan Zare Draft Nick Caltabiano 23rd July 2024 **Environmental Consultant** Project Manager 6. Lanc 1.let **FINAL** Ehsan Zare Nick Caltabiano 24th July 2024 Environmental Consultant Project Manager E. Lave 1.let

Report Revision	Details	Report No.	Date	Amended By
0	FINAL Report	N09489	24.07.2024	-
Issued By:				
			lah .	
			pl. latto	
			Nick Caltabiano	

This report may only be reproduced or reissued in electronic or hard copy format by its rightful custodians listed above, with written permission by NEO Consulting. This report is protected by copyright law.

Table of Contents

Executive Summary	5
1. Introduction	6
1.1 Background	6
1.2 Objectives	6
1.3 Trigger for Assessment	6
1.4 Regulatory Framework	6
2. Scope of Work	6
3. Site Details	7
4. Site Condition	7
5. Site History	8
5.1 History of Site	8
5.2 Section 10.7 (2) Planning Certificate	8
5.3 NSW EPA Contaminated Land Register	8
5.4 Protection of the Environment Operation Act (POEO) Public Register	8
5.5 SafeWork NSW Hazardous Goods	8
5.6 Product Spill and Loss History	8
5.7 PFAS Investigation Program	8
6. Environmental Setting	9
6.1 Geology	9
6.2 Soil Landscape	9
6.3 Groundwater	9
6.4 Topography	9
6.5 Site Drainage	9
6.6 Acid Sulphate Soils	9
7. Areas of Environmental Concern	
8. Conceptual Site Model	
9. Assessment Criteria	
9.1 NEPM Health Investigation Level D (HIL-D) – Commercial/Industrial	13
9.2 NEPM Health Screening Level D (HSL-D) – Commercial/Industrial	14
9.3 NEPM Ecological Investigation Level (EIL) – Commercial/Industrial	14
9.4 NEPM Ecological Screening Level (ESL) – Commercial/Industrial	15
9.5 NEPM Management Limits – Commercial/Industrial	15
9.6 NEPM Health Screening Level D (HSL-D) – Commercial/Industrial	16
10. Sampling and Analysis Plan	
10.1 Sampling Rationale	17
10.2 Field Sampling Methodology	17
11. Analytical Results	
11.1 Soil Analytical Results	19
11.2 QA/QC Results	19
12. Data Gaps	

13. Conclusion	20
14. Recommendations	21
References	22
Limitations	23

Appendices

- Appendix A Figures and Site Photographic Log
- Appendix B QA/QC Discussion
- Appendix C Laboratory Results and Chain of Custody (NATA)
- Appendix D Property Report and Relevant Information
- Appendix E Test Pit Logs

Executive Summary

NEO Consulting were appointed by Bell Architecture Pty Ltd (the client) to undertake a Preliminary Site Investigation (PSI) for the property located at No. 45 Orth Street, Kingswood NSW 2747 (the site). The site is legally identified as Lot 86/-/DP14333 and has an area of approximately 727m². The site is currently zoned as MU1 - Mixed Use.

NEO Consulting understands that the proposed development for the site includes:

- 1- Demolition of onsite structures; and
- 2- Construction of a medical centre.

The objective of this PSI was to provide a preliminary assessment of potentially contaminating activities which may have impacted the site. The scope of work undertaken includes:

- A site inspection to identify potential sources of contamination;
- Soil sampling to identify any contaminants (if present);
- Historical investigations relating to the site (if any);
- Local Council records and planning certificates;
- NSW Environment Protection Authority (EPA) environmental contaminated lands register;
- Protection of the Environment Operations (POEO) Act public register;
- Dial-Before-You-Dig enquiry for an evaluation into local underground services and assets;
- Review of local geological and hydrogeological information, including an evaluation of the WaterNSW registered groundwater bore database; and
- Acid Sulphate Soils (ASS) data maps

A site investigation was undertaken on the 12th July 2024 by qualified environmental consultants. During the site inspection, a soil investigation program was undertaken with a judgemental approach within the site to identify areas of contamination. Six (6) soil samples were obtained from the topsoil/Fill (0-0.15m). The samples were submitted to a National Association of Testing Authorities, Australia (NATA) accredited laboratory for analysis of Chemicals of Potential Concern (CoPC) that may have impacted the site during historical or present activities.

Historical aerial images indicate that the building structures on the site were built in 1970s. The site originally contained a secondary building that was demolished in the 1980s. That area was covered with a concrete slab and has been used as a parking lot since then.

The soil underlying the front portion of the site consists of dark silty sandy clay topsoil to a depth of approximately 0.5 m, followed by natural reddish-brown silty sandy clay beyond 0.5 m.

Analytical results indicated that all analytes were below the laboratory limit of reporting (LOR) and/or the NEPM 2013 Health and Ecological Assessment Criteria for Residential (A) developments, except for Asbestos in one sample collected from the footprint of the previous secondary building in this area. The identified Asbestos contamination may be the result of the demolition of this structure.

Therefore, post-demolition soil sampling should be conducted in areas beneath the concrete slab to determine the extent of Asbestos contamination, and a Remedial Action Plan (RAP) should be prepared based on the findings of this PSI and the post-demolition soil sampling. The RAP will outline the steps for remediation and validation of this area.

Data gaps remain for the site, including the presence of hazardous materials within onsite. Therefore, a Hazardous Materials Survey (HMS) should be undertaken prior to the demolition of onsite structures.

Based on the site investigation and analytical results, NEO Consulting finds that <u>the site can be made</u> <u>suitable</u> for the proposed development and Residential (A) land use, provided the recommendations within **Section 14** are undertaken.

PO Box 279 Riverstone NSW 2765
 0455 485 502

admin@neoconsulting.com.au
 neoconsulting.com.au

1. Introduction

1.1 Background

NEO Consulting were appointed by Bell Architecture Pty Ltd (the client) to undertake a Preliminary Site Investigation (PSI) for the property located at No. 45 Orth Street, Kingswood NSW 2747 (the site). The site is legally identified as Lot 86/-/DP14333 and has an area of approximately 727m². The site is currently zoned as MU1 - Mixed Use.

A site inspection was undertaken on 12th July 2024 by qualified environmental consultants. Reporting, photographs and sampling were conducted on this day and with reference to the relevant regulatory criterial **(2. Scope of Work)**. Further information of the inspection is described in **4. Site Condition**.

NEO Consulting understands that the proposed development for the site includes:

- 1- Demolition of onsite structures; and
- 2- Construction of a medical centre.

1.2 Objectives

This report provides a preliminary assessment of current and/or historical potentially contaminating activities that may have impacted the soils and will determine if the site is suitable for the proposed development.

1.3 Trigger for Assessment

The trigger for assessment is to support a Development Application (DA) that is submitted to Penrith City Council.

1.4 Regulatory Framework

This PSI has been prepared in general accordance with the following regulatory framework:

- State Environmental Planning Policy (Resilience and Hazard) 2021;
- National Environment Protection Measures (NEPM), 2013;
- NSW Environmental Protection Authority, Guidelines on the Duty to Report Contamination under Contaminated Land Management Act, 1997;
- NSW Environmental Protection Authority, Consultants Reporting on Contaminated Land: Contaminated Land Guidelines, 2020;
- Protection of the Environment and Operation Act 1997
- Protection of the Environment Operations (Waste) Regulations, 2005;
- Blacktown Local Environmental Plan (2015); and
- Blacktown Development Control Plan (BDCP 2015).

2. Scope of Work

To meet the requirements in Section 1.3 of this report, the following scope of works were included:

- A site inspection to identify potential sources of contamination on site;
- Soil sampling to identify any contaminants (if present);
- Historical investigations relating to the site (if any);
- Review of current and historical Certificates of Title and Local Council records and planning certificates and NSW EPA Contaminated Land Records and NSW POEO Register;
- Review of local geological and hydrogeological information, including an evaluation of the NSW Groundwater registered groundwater bore database;
- Review of Acid Sulphate Soil data maps;
- Development of a Conceptual Site Model (CSM) to identify the connections between potential sources of contamination and exposure pathways, human and/or ecological receptors; and
- Recommendations for additional investigations (if any), based on the identified data gaps and findings of this report.

NEO CONSULTING PTY LTD ABN 26 615 633 988 PO Box 279 Riverstone NSW 2765
 0455 485 502

admin@neoconsulting.com.au
 meoconsulting.com.au

3. Site Details

Table 1. Site Details	
Address	45 Orth Street, Kingswood NSW 2747
Deposited plan	Lot 186/-/DP14333
Zoning	MU1 - Mixed Use
Locality map	Figure 1, Appendix A
Site Boundary	Figure 2, Appendix A
Area	727m ²
LGA	Penrith City Council
Site Coordinates	-33.759687, 150.716065
GDA 94	288,466.14 mE, : 6,262,123.16 mS, 56H

Table 2. Surrounding land-use

ırking lot
ommercial Property
th Street
merset Street
r r

4. Site Condition

A site inspection was undertaken on 12th July 2024 by NEO Consulting. During the site inspection, the following observations were noted (photographs in **Appendix A**):

- The site was contained a building structure within the southern portion used as medical centre.
- The site was contained a parking area within the central and northern portion.
- The groundcover of the parking lot was consisted of concrete slab and gravel.
- The front portion of the site had lawn groundcover.
- The soil underlying the front portion of the site consists of dark silty sandy clay topsoil to a depth of approximately 0.5 m, followed by natural reddish-brown silty sandy clay beyond 0.5 m.
- No oil staining was observed within the topsoil and subsoil.
- The site gradient was overall flat.

The nearest human receptors include adjoining residential and commercial properties, and environmental receptor includes Werrington Creek located ~1.5km east of the site.

5. Site History

5.1 History of Site

Historical aerial images indicate that the building structure on the site was built in 1970s. The site originally contained a secondary building that was demolished in the 1980s. That area was covered with a concrete slab and has been used as a parking lot since then.

A summary of available historical aerial imagery is contained below, and the images referenced can be seen in **Appendix A**.

Year	Description
1943-1947	The site and surrounding area comprised a rural vegetated landscape.
1955	The site remained unchanged. The surrounding area saw an increase in residential developments.
1975-1986	The site contained a dwelling within the southern portion and a secondary building within the northern portion. The surrounding area increased further in residential developments to the east.
1998	The building within the northern portion of the site was removed and that area was covered with a concrete slab. The surrounding area increased in commercial developments to the west.
2004-2005-2013	The site was in a condition similar to its current state. The surrounding area improved in commercial developments.

Table 3. Historical aerial images of the site and surrounding area.

5.2 Section 10.7 (2) Planning Certificate

A Section 10.7 Planning Certificate describes how a property may be used and the restrictions on development. The Planning Certificate is issued under Section 149 of the Environmental Planning and Assessment Act 1979. At the time of reporting, the Planning Certificate was not available.

5.3 NSW EPA Contaminated Land Register

A search within the NSW EPA contaminated land register was undertaken for the site. No results were found for the site. No active licences were found within 500m radius of the site.

5.4 Protection of the Environment Operation Act (POEO) Public Register

A search on the POEO public register of licensed and delicensed premises (DECC) was undertaken for the site. No results were found for the site and 500m radius of the site.

5.5 SafeWork NSW Hazardous Goods

A search was not undertaken with SafeWork NSW for historical dangerous goods stored onsite. No evidence of underground storage of chemicals was encountered during the site inspection.

5.6 Product Spill and Loss History

The visual site inspection did not identify evidence of surface and subsurface stating within the site.

5.7 PFAS Investigation Program

The NSW Government PFAS Investigation Program map indicates the site is not currently listed or located within 1km of a listed site for PFAS contamination investigation and management programs.

6. Environmental Setting

6.1 Geology

Data obtained from the Penrith 1:100000 geology map indicates that the site is underlain by Bringelly Shale of the Wianamatta Group. This unit regionally consists of Shale, carbonaceous claystone, laminite, lithic sandstone, rare coal.

6.2 Soil Landscape

A review of the regional maps by the NSW Department of Planning, Industry and Environment indicates the site is generally located within the Luddenham soil landscape. This landscape is normally recognised by undulating to rolling low hills on Wianamatta Group shales, often associated with Minchinbury Sandstone; Local relief of 50–80 m and slopes of 5–20%. Soils are shallow (<100 cm) dark Podzolic Soils or massive Earthy Clays on crests; moderately deep (70–150 cm) Red Podzolic Soils on upper slopes; moderately deep (<150 cm) Yellow Podzolic Soils and Prairie Soils on lower slopes and drainage lines.

6.3 Groundwater

The site is located within Upper South Creek Hydrogeological Landscape (HGL). This HGL is characterised by low hills on Triassic shale and sandstone within the Sydney Basin at Badgerys Creek and Catherine Field. It is an area of moderate to high rainfall (~800 mm) located in the centre of the Western Sydney region.

Water predominantly moves laterally through the shale layers (although vertical movement through fracturing does occur) and vertically through interbedded sandstone and sandstone fracturing (primary and secondary porosity). Considerable lateral water movement may occur at sandstone shale interface. Water is likely to move relatively slowly through this landscape due to the low gradient and is therefore likely to accumulate more salt out of the soils and bedrock.

Groundwater systems are local with short flow lengths and are loosely defined by topographic catchments. Water quality within these systems is brackish to saline. Water table depths are intermediate (2 - 6 m).

A groundwater bore search was conducted on 23rd July 2024. No Bore was found within 500m radius of the site.

It was beyond the scope of works to study the groundwater flow direction. However, based on the regional topography, groundwater is expected to flow towards Werrington Creek located ~1.5km east of the site.

6.4 Topography

The site gradient is overall flat. The regional topography surrounding the site has a gentle sloping (<5%) towards east.

6.5 Site Drainage

Site drainage is likely consistent with the local topography. Stormwater probably flows east via the municipal stormwater system and reaches Werrington Creek located ~1.5km east of the site.

6.6 Acid Sulphate Soils

To determine whether there is a potential for ASS to be present at the site, information was reviewed utilising the NSW Department of Planning, Industry and Environment eSPADE map viewer. The ASS risk maps show the chance of acid sulphate soil occurrence. This search indicated that there is "no known occurrence" of ASS underlying the soil at this site.

7. Areas of Environmental Concern

Based on the above information, the potential Areas of Environmental Concern (AEC) and their associated Contaminants of Potential Concern (CoPC) for the site were identified and summarised (**Table 4**).

Table 4. Potential Areas and Contaminants of Concern

AEC	Potentially Contaminating / Hazardous Activity	CoPC	Likelihood of Site Impact	Comments
Entire site	Onsite Carparking	TRH, BTEX, PAH, OCP/OPP, PCBs,	Low	No staining was observed within the site.
	Hazardous materials from demolition of historical onsite structures	Metals, Asbestos		
Onsite structures	Hazardous materials	ACM, Lead	Low	A HMS should be

(paint and/or dust), PCBs, SMF undertaken.

Abbreviations: Total Recoverable Hydrocarbons (TRH), Benzene Toluene Ethylbenzene and Xylene (BTEX), Polycyclic Aromatic Hydrocarbon (PAH), Organochlorine Pesticides (OCPs), Organophosphorus Pesticides (OPPs), Polychlorinated Biphenyls (PCBs), Asbestos Containing Materials (ACM), Hazardous Materials Survey (HMS), Ozone Depleting Substances (ODS), Synthetic Mineral Fibres (SMF), polychlorinated biphenyls (PCBs), Metals including Arsenic (AS), Cadmium (CD), Chromium (CR), Copper (CU), Lead (PB), Nickel (NI), Zinc (ZN) and Mercury (HG).

8. Conceptual Site Model

A Conceptual Site Model (CSM) was developed to provide an indication of potential risks associated with contamination source and contamination migration pathways, receptors and exposure mechanisms. The CSM provides a framework for the review of the reliability and useability of the data collected and to identify data gaps in the existing site characterisation. Here, we consider the connections between the following elements:

- Potential contamination sources and their associated CoPC;
- Potential human receptors that may be impacted by the site contamination are current and future site users including occupants to the dwelling/infrastructures onsite, site workers and the general public within the immediate vicinity of the site;
- Potential environmental receptors to the site including but not limited to: groundwater and surface water bodies, residual soils at and/or nearby the site;
- Potential exposure pathways; and
- Whether source-pathway-receptor connections are complete based on current and future site conditions.

Potential Sources and Mechanism of Contamination	Potential Receptor	Potential Exposure Pathway	Complete connection	Risk	Justification/ Control Measures
Onsite Carparking (Top down) Hazardous materials from	Future site occupant, construction workers, general public	Dermal contact, inhalation/ ingestion of particulates.	Complete (current)	Low	Exposure to potentially contaminated soils is possible due to unsealed surfaces.
demolition of historical onsite structures (Top down) Hazardous	surrounding sensitive receptors		Complete (Future)	Low	If present, impacted soils are to be disposed of off-site in accordance with an unexpected finds protocol.
materials within onsite structures (Top down)	Natural soils	Migration of contamination from fill layer.	Complete (current)	Low	If contamination is present in the fill layer, migration to the natural layer is likely to be limited.
			Complete (Future)	Low	If present, impacted soils are to be disposed of off-site.
	Werrington Creek located ~1.5km east of the site	Migration of impacted groundwater and surface water run- off.	Incomplete (current)	Low	The local topography surrounding the site falls toward Werrington Creek located ~1.5km east of the site. It is unlikely surface waters from the site

Table 5. Conceptual Site Model

NEO CONSULTING PTY LTD ABN 26 615 633 988 PO Box 279 Riverstone NSW 2765
 0455 485 502

admin@neoconsulting.com.au
neoconsulting.com.au

		Incomplete (future)	Low	reach this waterway. If present, contaminated soils and groundwater are likely to be remediated.
Underlying aquifer	Leaching and migration of contaminants through groundwater infiltration.	Incomplete (current)	Low	leachability of contaminants is likely to be limited due to presence of clayey subsoil.
		Incomplete (future)	Low	 If present, contaminated soil and/or groundwater is likely to be remediated.

9. Assessment Criteria

The following assessment criteria were adopted for the investigation.

9.1 NEPM Health Investigation Level D (HIL-D) - Commercial/Industrial

HILs are scientific, risk-based guidance levels to be used as in the primary stage of assessing soil contamination to evaluate the potential risks to human health from chronic exposure to contaminants. HILs are applicable to a broad range of metals and organic substances, and generally apply to depths up to 3m below the surface. Tier 1 HILs are divided into sub-criteria. The sub-criteria appropriate to the site is HIL D –Commercial/Industrial.

NEPM Assessment Criteria	NEPM 2013 Commercial/Industrial Soil HIL-D, mg/kg
	Pesticides
НСВ	80
Heptachlor	50
Chlordane	530
Aldrin & Dieldrin	45
Endrin	100
DDT+DDE+DDT	3,600
Endosulfan	2,000
Methoxychlor	2,500
Mirex	100
	Metals
Arsenic, As	3,000
Cadmium, Cd	900
Chromium, Cr	3,600
Copper, Cu	240,000
Lead, Pb	1,500
Nickel, Ni	6,000
Zinc, Zn	400,000
Mercury, Hg	730
Polycyc	lic Aromatic Hydrocarbons
Carcinogenic PAH (as BaP TEQ)	40
Total PAH (18)	4,000
Poly	vchlorinated biphenyls
Total PCBs	8

Table 6. HIL-D

9.2 NEPM Health Screening Level D (HSL-D) – Commercial/Industrial

HSLs have been developed for selected petroleum compounds and fractions and are used for the assessment of potential risks to human health from chronic inhalation and direct contact pathways of petroleum vapour emanating off petroleum contaminated soils (Vapour Risk). HSLs are guided by land-use scenarios, specific soil physicochemical properties and generally apply to depths below surface to >4m. Tier 1 HSLs are divided into sub-criteria. The sub-criteria appropriate to the site is HSL D – Commercial/Industrial.

Table 7. HSL-D

Assessment Criteria	NEPM 2013 Soil HSL-D for Vapour Intrusion, 0-<1m Depth, Clay,
Ν	Aonocyclic Aromatic Hydrocarbons
Benzene	4
Toluene	NL
Ethylbenzene	NL
Xylenes	NL
	Polycyclic Aromatic Hydrocarbons
Naphthalene	NL
	Total Recoverable Hydrocarbons
TRH C6-C10 - BTEX (F1)	310
TRH >C10-C16 - N (F2)	NL

9.3 NEPM Ecological Investigation Level (EIL) - Commercial/Industrial

Ecological investigation levels (EILs) have been developed to assess the risk for the presence of metals and organic substance in a terrestrial ecosystem. EILs are guided by land-use scenarios, specific soil physicochemical properties and generally apply to the top 2m of soil.

ElLs can be applied for arsenic (As), copper (Cu), chromium III (Cr(III)), dichlorodiphenyltrichloroethane (DDT), naphthalene, nickel (Ni), lead (Pb) and zinc (Zn). The NEPM Soil Quality Guidelines (SQG) for ElLs are calculated using the Added Contamination Limit (ACL) to determine the amount of contamination that had to be added to the soil to cause toxicity, including ambient background concentration (ABC).

Table 8. Generic EIL

Assessment Criteria	NEPM 2013 Soil Generic EIL for Commercial/Industrial, mg/kg
	Metals
Arsenic, As	160
Lead, Pb	1800
	Pesticides
DDT	640
Pc	Dlycyclic Aromatic Hydrocarbons
Naphthalene	370

9.4 NEPM Ecological Screening Level (ESL) - Commercial/Industrial

ESLs have been developed for selected petroleum hydrocarbons (BTEX, benzo(a)pyrene, TRH F1 and F2) in soil, based on fresh contamination. These parameters are applicable to coarse and fine-grained soil and apply from the surface of the soil to 2m below ground level, which corresponds with the root and habitat zone for many species.

Table 9. ESL

Assessment Criteria	NEPM 2013 Soil ESL for Urban, Commercial/Industrial, Fine - Grained Soil, mg/kg		
M	Monocyclic Aromatic Hydrocarbons		
Benzene	95		
Toluene	135		
Ethylbenzene	185		
Xylenes	95		
Polycyclic Aromatic Hydrocarbons			
BaPyr (BaP)	1.4		
Total Recoverable Hydrocarbons			
TRH C6-C10	215		
TRH >C10-C16	170		
TRH >C16-C34 (F3)	2,500		
TRH >C34-C40 (F4)	6,600		

9.5 NEPM Management Limits – Commercial/Industrial

Management Limits for petroleum have been developed for prevention of explosive vapour accumulation, prevention of the formation of observable Light Non-Aqueous Phase Liquids (LNAPL) and protection against effects on buried infrastructure. Commercial/Industrial limits have been adopted based on the proposed land use.

Table 10. Management Limits

Assessment Criteria	NEPM 2013 Management Limits for Commercial/Industrial Space, Fine-Grained Soil, mg/kg
Тс	tal Recoverable Hydrocarbons
TRH C6-C10	800
TRH >C10-C16	1,000
TRH >C16-C34 (F3)	5,000
TRH >C34-C40 (F4)	10,000

9.6 NEPM Health Screening Level D (HSL-D) – Commercial/Industrial

The assessed soil must not contain Asbestos Containing Materials (ACM) in the excess of 0.05%w/w and Asbestos Fines (AF) and Fibrous Asbestos (FA) in the excess of 0.001%w/w. Additionally, surface soil within the site must be free of visible ACM, AF and FA.

Table 11. HSL-D for Asbestos		
Assessment Criteria	Health Screening Level (%w/w) Commercial/Industrial (D)	
	Asbestos	
ACM	0.05%w/w	
FA and AF (friable asbestos)	0.001%w/w	
All forms of asbestos	No visible asbestos for surface soils	

10. Sampling and Analysis Plan

10.1 Sampling Rationale

 Table 12.
 Sampling Rationale

Sampling Criteria	Chosen Approach	Justification
Sampling Pattern	Judgemental sampling pattern within accessible areas	This pattern was selected due to the area of the site, access to underlying soil, the AEC and CoPC as well as the potential heterogeneity of any contamination.
Sampling Density	Six (6) soil samples from six (6) locations.	This sampling density was selected based on the extent of the potential contaminated area to be detected, feasibility, the site history, distribution of current and historical uses on site, location and condition of structures
Field QA/QC Samples	Duplicate (TP6) Trip Spike (TS) Trip Blank (TB)	QA/QC sampling was undertaken in general accordance with specifications outlined in Australian Standards (AS) 4482.1-2005, Standard Guide to the Investigation and Sampling of Sites with Potentially Contaminated Soil and NEPM 2013 Schedule B2; Guideline on Site Characterisation.
Sampling Depths	0-0.15m	These depths were selected in compliment with sampling density and to target depths of potential contaminants.

10.2 Field Sampling Methodology

Sampling was undertaken using borehole drilling and test pit excavation. Test pits (TP1 and 2, TP4,5 and 6) were excavated with a shovel to a depth of ~0.6m bgl. Boreholes (TP3) were drilled using a flight auger to a depth of ~6m bgl. The samples were collected using clean nitril gloves and placed into laboratory 250m sample jars. The samples were screened in the field using a handheld Photoionisation Detector (PID). The equipment was decontaminated with detergent and deionised water between samplings. Samples were stored on ice in an esky while on-site and in transit to a NATA accredited laboratory for the analysis of the CoPC under Chain of Custody (COC) documentation.

Additional 500ml soil samples were collected from areas beneath previous onsite secondary building (TP3) and current building (TP5) for Asbestos analysis with NEPM Gravimetric Method.

Borehole and test pit logs are provided in Appendix E.

Table 13. Sample details

Sample ID	Depth (m)	Sample Description	Matrix	PID (ppm)
TP1	0-0.15	Topsoil Silty to sandy CLAY CL: soft, low plasticity, dark brown, fine-grained sand, trace fine sized gravel, organic, slightly moist.	Topsoil	<1.0
TP2	0-0.15	Topsoil Silty to sandy CLAY CL: soft, low plasticity, dark brown, fine-grained sand, trace fine sized gravel, organic, slightly moist.	Topsoil	<1.0
TP3	0-0.15	Topsoil Silty to sandy CLAY CL: soft, low plasticity, dark brown, fine-grained sand, trace fine sized gravel, organic, slightly moist.	Topsoil	<1.0
TP4	0-0.15	Topsoil Silty to sandy CLAY CL: soft, low plasticity, dark brown, fine-grained sand, trace fine sized gravel, organic, slightly moist.	Topsoil	<1.0
TP5	0-0.15	Topsoil Silty to sandy CLAY CL: soft, low plasticity, dark brown, fine-grained sand, trace fine sized gravel, organic, slightly moist.	Topsoil	<1.0
TP6	0-0.15	Topsoil Silty to sandy CLAY CL: soft, low plasticity, dark brown, fine-grained sand, trace fine sized gravel, organic, slightly moist, plant rootlets.	Topsoil	<1.0

Table 14. Laboratory Testing Program

Sample	Analyses
TP1, TP2, TP4, and TP6	TRH, BTEX, PAH, OCP, OPP, PCBs, Metals and Asbestos (AS4964)
TP3 and TP5	TRH, BTEX, PAH, OCP, OPP, PCBs, Metals and Asbestos (AS4964 and NEPM Gravimetric Method)

11. Analytical Results

11.1 Soil Analytical Results

Analytical results indicated that all analytes were below the laboratory limit of reporting (LOR) and/or the NEPM 2013 Health and Ecological Assessment Criteria for Residential (A) developments, except for Asbestos in TP3 which exceeded HSL-D (FA/AF). The identified asbestos contamination may be the result of the demolition of this a structure within this area.

Soil analytical results are provided in the laboratory reports in Appendix C.

11.2 QA/QC Results

Analytical results for the field Trip Blank were below LOR and all RPDs for field Duplicate and Trip Spike were within acceptable limits (±30%).

SGS laboratory report SE268113 R0 indicates all Data Quality Objectives were met with the exception of the following:

• Duplicate: PAH (Polynuclear Aromatic Hydrocarbons) in Soil, 1 item.

Overall, the QA/QC results indicate a good quality data set.

12. Data Gaps

- The presence and extent of hazardous materials within onsite structures; A Hazardous Material Survey (HMS) is required prior to demolition of onsite structures; and
- Extent of Asbestos contamination beneath concrete slab within the central portion of the site. Postdemolition sampling is required.

13. Conclusion

Historical aerial images indicate that the building structures on the site were built in 1970s. The site originally contained a secondary building that was demolished in the 1980s. That area was covered with a concrete slab and has been used as a parking lot since then.

The soil underlying the front portion of the site consists of dark silty sandy clay topsoil to a depth of approximately 0.5 m, followed by natural reddish-brown silty sandy clay beyond 0.5 m.

Analytical results indicated that all analytes were below the laboratory limit of reporting (LOR) and/or the NEPM 2013 Health and Ecological Assessment Criteria for Residential (A) developments, except for asbestos in one sample collected from the footprint of the previous secondary building in this area. The identified asbestos contamination may be the result of the demolition of this structure.

Therefore, post-demolition soil sampling should be conducted in areas beneath the concrete slab to determine the extent of asbestos contamination, and a Remedial Action Plan (RAP) should be prepared based on the findings of this PSI and the post-demolition soil sampling. The RAP will outline the steps for remediation and validation of this area.

Data gaps remain for the site, including the presence of hazardous materials within onsite. Therefore, a Hazardous Materials Survey (HMS) should be undertaken prior to the demolition of onsite structures.

Based on the site investigation and analytical results, NEO Consulting finds that <u>the site can be made</u> <u>suitable</u> for the proposed development and Residential (A) land use, provided the recommendations within **Section 14** are undertaken.

14. Recommendations

Based on the information collected and available during this investigation, the following recommendations have been made:

- All structures onsite should have a <u>Hazardous Materials Survey (HMS</u>) conducted by a qualified occupational hygienist and/or environmental consultant for the site prior to any demolition or renovation works in accordance with relevant Australian Standards, SafeWork NSW codes of practice and any other applicable requirements;
- If ACM confirmed by the HMS, then following is required:
 - An Asbestos Removal Management Plan (ARMP); The ARMP should address the removal of surface Asbestos contamination near onsite structures.
 - The removal works will require a Class B licensed removal contractor;
 - Reporting on transport and management of asbestos waste in accordance with EPA Part 7 of the Protection of the Environment Waste Regulation 2017; and
 - A clearance inspection and clearance certificate will be required post demolition by a licensed asbestos assessor under clauses 473 & 474 of NSW Work Health and Safety Regulations 2017.
- The demolition of structures and excavation activity on site be undertaken in accordance with relevant Australian Standards, SafeWork NSW codes of practice and any other applicable requirements;
- <u>Post-demolition sampling</u> and Inspection of the site by an NSW Licensed Asbestos Assessor (LAA) to further assess the presence of Asbestos beneath concrete slab within central portion of the site.
- A <u>Remedial Action Plan (RAP)</u> should be prepared based on the findings of this PSI and the postdemolition soil sampling. The RAP will outline the steps for remediation and validation of this area.
- Any other soils requiring excavation, onsite reuse and/or removal must be classified in accordance with "Waste Classification Guidelines Part 1: Classifying Waste" NSW EPA (2014); and
- A site specific <u>'Unexpected Finds Protocol'</u> is to be made available for reference for all occupants and/or site workers in the event unanticipated contamination is discovered, including asbestos.

References

Statutory Requirements

- National Environment Protection Council Act 1994;
- Protection of the Environment and Operation Act 1997;
- The Contaminated Land Management Act 1997;
- Work Health and Safety Act, 2011.

Regulatory Framework

- State Environmental Planning Policy (Resilience and Hazard) 2021;
- NSW EPA, Guidelines on the Duty to Report Contamination under the Contaminated Land Management Act, 1997;
- NSW EPA, Resource Recovery Order under Part 9, Clause 93 of the Protection of the Environment Operations (Waste) Regulation, 2014;
- NSW EPA, Consultants Reporting on Contaminated Land: Contaminated Land Guidelines, 2020;
- NSW EPA, Contaminated Land Management, Guidelines for the NSW Site Auditor Scheme, 2017 (3rd Edition);
- NSW EPA, Waste Classification Guidelines Part 1: Classifying Waste, 2014;
- NEPC, National Environment Protection (Assessment of Site Contamination) Measures (NEPM), 2013;
- HEPA, PFAS National Environmental Management Plan, Version 2.0, 2020;
- Protection of the Environment Operations (Waste) Regulations, 2005;
- SafeWork NSW, Managing Asbestos in or On Soil, 2014; and
- Work Health and Safety Regulation, 2011.

Limitations

The findings of this report are based on the Scope of Work outlined in Section 2. NEO Consulting performed the services in a manner consistent with the normal level of care and expertise exercised by members of the environmental consulting profession. No warranties, express or implied are made.

The results of this assessment are based upon the information documented and presented in this report. All conclusions and recommendations regarding the site are the professional opinions of NEO Consulting personnel involved with the project, subject to the qualifications made above. While normal assessments of data reliability have been made, NEO Consulting assumes no responsibility or liability for errors in any data obtained from regulatory agencies, statements from sources outside of NEO Consulting, or developments resulting from situations outside the scope of this project.

The results of this assessment are based on the site conditions identified at the time of the site inspection and validation sampling. NEO Consulting will not be liable to revise the report to account for any changes in site characteristics, regulatory requirements, assessment criteria or the availability of additional information, subsequent to the issue date of this report.

NEO Consulting is not engaged in environmental consulting and reporting for the purpose of advertising sales promoting, or endorsement of any client interests, including raising investment capital, recommending investment decisions, or other publicity purposes.

NEO CONSULTING

E. Lanc

Prepared by: Ehsan Zare Environmental Consultant

1. let

Reviewed by: Nick Caltabiano Project Manager

APPENDIX A

Figures and Photographic Log

NEO CONSULTING

Figure 1. The site is located approximately 46km west of Sydney CBD.

Site location

Source: Six Maps

Figure 1	Locality Map
Project	45 Orth Street, Kingswood NSW 2747

Figure 2. The approximate area of the property is 727m². Six (6) soil samples were obtained from the site.

Soil Sample Locations

Source: Nearmap

Project

Figure 3. Aerial image of the site and surrounding area 1943. The site and surrounding area comprised a rural vegetated landscape.

Source: NSW Historical Imagery

Figure 3
Project

Aerial Image 1943

Figure 4. Aerial image of the site and surrounding area 1955. The site remained unchanged. The surrounding area saw an increase in residential developments.

Source: NSW Historical Imagery

Figure 4
Project

Aerial Image 1955

Figure 5. Aerial image of the site and surrounding area 1975. The site contained a dwelling within the southern portion and a secondary building within the northern portion. The surrounding area increased further in residential developments to the east.

Source: NSW Historical Imagery Figure 5 Project

Figure 6. Aerial image of the site and surrounding area 1998. The building within the northern portion of the site was removed and that area was covered with a concrete slab. The surrounding area increased in commercial developments to the west.

Source: NSW Historical Imagery Figure 6 Project Aerial Image 1998 45 Orth Street, Kingswood NSW 2747

Figure 7. Aerial image of the site and surrounding area 2013. The site was in a condition similar to its current state. The surrounding area improved in commercial developments.

Source: NSW Historical Imagery Figure 7 Project

Figure 8. Front view of the dwelling within the site.

Figure 9. Western aspect of the dwelling.

Figure 10. Parking with concrete groundcover within the rear of the site.

Figure 11. Test pit excavation of TP4 beneath onsite dwelling.

Figure 12. Borehole drilling of TP3 within the concrete area.

Figure 13. Test pit excavation of TP4 underneath onsite building

APPENDIX B

QA/QC Discussion

NED CONSULTING

Data Quality Objectives (DQOs)

The DQOs have been developed in accordance with the NEPM Appendix B of Schedule B2 and provide the type, quantity and quality of data to support decisions regarding the environmental conditions of this site.

Table 15. DQOs	
Step 1: State the	NEO Consulting have identified the following risks to human and
problem	environmental receptors:
	- The proposed development for the site includes demolition of
	onsite buildings and construction of a medical centre. The
	intended future use of the site is considered a sensitive human
	health risk setting.
Step 2: Identify	NEO Consulting considered the site history, the use of this site, and the
the decision/goal	NEPM Guidelines, when identifying the decisions required for the site to be
of the study	considered suitable for its continued land use. The decisions required to
	meet these decisions are as follows:
	- Was the sampling, analysis and quality plan designed appropriate
	to achieve the aim of the report?
	- If present, is on-site contamination capable of migrating off-site?
	- Are there any unacceptable risks to the future on site or off-site
	receptors in the soil or groundwater?
	- Is the site suitable for its continued land use?
Chara De Islamilite	
step 3: identify	Appropriate identification of CoPC:
ine mormation	- Appropriate identification of CorC,
inputs	- Soli sampling and analysis programs across the site;
	- Appropriate quality associative/quality control to enable an
	Sere asing semalar angletical results against generalists
	- Screening sampler analytical results against appropriate
	assessment chiena for the intended iand use.
Step 4: Define the	The study boundaries are:
boundaries of the	- Lateral boundary: The legally defined area of the site:
study	- Vertical boundary: The soil interface to the maximum depth
,	reached during soil sampling: and
	- Temporal boundary: Constrained to a single visit to the site
Step 5: Develop	Here, NEO Consulting integrate the information from steps 1 – 4 to support
the analytical	and justify our proposed analytical approach. Our aim is to confirm if the
approach	site is suitable for the proposed development. If the findings of the SAQP
	identify;
	 Any exceedance of the adopted assessment criteria for soil;
	 Professional opinion that further assessment is required; and/or
	- Adopted RPD for QC data not met.
------------------	--
	Further assessment may be required to confirm suitability of the site in the form of; Data Gap investigation, Remediation Action Plan and Site Validation.
Step 6: Specify	For judgemental soil sampling the data must meet the following qualifiers;
performance or	 Acceptable recovery on all surrogate spikes used in laboratory
acceptance	analyses;
criteria	 Acceptable analytical method to ensure detection limit
	appropriate for all analytes;
	If these conditions are not met, then chemical analysis will require re-
	testing for all samples with fresh aliquot.
Stop 7: Optimico	ludgemental sampling pattern within the AEC will provide suitable
step 7: Optimise	Judgemental sampling patient within the AEC will provide suitable
obtaining data	Cuality Indicators (DOIs) to cover precision, accuracy
	representativeness, completeness and comparability (PARCC). This
	sampling pattern will ensure that critical locations are assessed and
	analysed appropriately for COPC
The DQOs align	Yes
with CSM	

APPENDIX C

Laboratory Results and Chain of Custody (NATA)

NED CONSULTING

Asses	sment Criteria	TRH C6-C10	TRH C6-C10 - BTEX (F1)	TRH >C10-C16	TRH >C ₁₀ -C ₁₆ - N (F2)	TRH >C16-C34 (F3)	TRH >C34-C40 (F4)
NEPM 2013 Comme Vapour Intrusion,	ercial/Industrial Soil HSL-D for 0-<1m depth, Clay, mg/kg		310		NL		
NEPM 2013 Commercial/Industrial Soil HSL-D for direct contact, mg/kg		26 000		20 000		27 000	38 000
NEPM 2013 Commercial/Industrial Soil ESL-D for direct contact, mg/kg		215		170		2500	6600
NEPM 2013 N Commercial/Inde	lanagement Limits for ustrial for fine-grained soil, mg/kg	800		1000		5000	10 000
Sample	Depth (m)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
TP1	0-0.15	<25	<25	<25	<25	<90	<120
TP2	0-0.15	<25	<25	<25	<25	<90	<120
TP3	0-0.15	<25	<25	<25	<25	<90	<120
TP4	0-0.15	<25	<25	<25	<25	<90	<120
TP5	0-0.15	<25	<25	<25	<25	<90	<120
TP6	0-0.15	<25	<25	<25	<25	<90	<120
D1	0-0.15	<25	<25	<25	<25	<90	<120

Table 16. Total Recoverable Hydrocarbon (TRH) analytical results. Values are presented as mg/kg. NL = Not Limiting.

Assessr	ment Criteria	Benzene	Toluene	Ethylbenzene	Xylenes
NEPM 2013 Commercial/Indust <1m dept	trial Soil HSL-D for Vapour Intrusion, 0- th, Clay, mg/kg	4	NL	NL	NL
NEPM 2013 Commercial/Industrial Soil ESL-D for direct contact, mg/kg		95	135	185	95
Sample	Depth (m)	mg/kg	mg/kg	mg/kg	mg/kg
TP 1	0-0.15	<0.1	<0.1	<0.1	<0.3
TP2	0-0.15	<0.1	<0.1	<0.1	<0.3
TP3	0-0.15	<0.1	<0.1	<0.1	<0.3
TP4	0-0.15	<0.1	<0.1	<0.1	<0.3
TP5	0-0.15	<0.1	<0.1	<0.1	<0.3
TP6	0-0.15	<0.1	<0.1	<0.1	<0.3
D1	0-0.15	<0.1	<0.1	<0.1	<0.3
TB	0-0.15	<0.1	<0.1	<0.1	<0.3
TS	0-0.15	[94%]	[94%]	[94%]	[94%]

Table 17. Benzene, Toluene, Ethylbenzene and Xylene (BTEX) analytical results. Values are presented as mg/kg. NL = Not Limiting.

Assessm	ent Criteria	Naphthalene	Benzo(a)pyrene	Carcinogenic PAH (as BaP TEQ)	Total PAH (18)	Total PCBs
NEPM 2013 Comr HSL-D for Vapo depth, C	nercial/Industrial Soil ur Intrusion, 0-<1m Clay, mg/kg	NL				
NEPM 2013 Sc Commercial/	bil Generic ElL for Industrial, mg/kg	370		_		
NEPM 201 Commercial/Indu soil,	3 Soil ESL for Istrial for fine-grained mg/kg		1.4			
NEPM 2013 Comr HIL-D	nercial/Industrial Soil , mg/kg		1.00 TEF	40	4000	8
Sample	Depth (m)	mg/kg	mg/kg	TEQ (mg/kg)	mg/kg	mg/kg
TP 1	0-0.15	<0.1	<0.1	<0.3	<0.8	<]
TP2	0-0.15	<0.1	<0.1	<0.3	<0.8	<]
TP3	0-0.15	<0.1	<0.1	<0.3	<0.8	<]
TP4	0-0.15	<0.1	<0.1	<0.3	<0.8	<]
TP5	0-0.15	<0.1	<0.1	<0.3	<0.8	<]
TP6	0-0.15	<0.1	<0.1	< 0.3	<0.8	<]
D1	0-0.15	<0.1	<0.1	<0.3	<0.8	<1

Table 18. Polycyclic Aromatic Hydrocarbon (PAH) and Polychlorinated biphenyl (PCBs) analytical results. Not Analysed (N.A.)

Assessme	Assessment Criteria Arsenic, As Cadmium, Cd Chromium, Cr Cop				Copper, Cu	Lead, Pb	Nickel, Ni	Zinc, Zn	Mercury, Hg
NEPM 2013 Commercial,	3000	900	3600	240 000	1500	6000	400 000	730	
NEPM 2013 Soil Generic E m	113 Soil Generic EIL for Commercial/Industrial, 160					1800			
Sample	Depth (m)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
TP1	0-0.15	7	<0.3	18	23	67	5.8	170	<0.05
TP2	0-0.15	7	1.1	20	67	170	5.8	470	<0.05
TP3	0-0.15	6	<0.3	18	7.7	24	3.8	32	<0.05
TP4	0-0.15	5	<0.3	13	8.2	22	4.0	30	<0.05
TP5	0-0.15	4	<0.3	14	60	120	9.7	250	0.09
TP6	0-0.15	4	<0.3	11	27	44	5.1	62	0.11
D1	0-0.15	4	<0.3	10	28	45	5.8	63	0.14

 Table 19. Heavy Metal analytical results. Values are presented as mg/kg.

Assessmer	nt Criteria	НСВ	Heptachlor	Chlordane	Aldrin & Dieldrin	Endrin	DDT	DDD+DDE +DDT	Endosulfan	Methoxychlor	Mirex
NEPM 2013 Comn Soil HIL-D	nercial/Industrial , mg/kg	80	50	530	45	100		3600	2000	2500	100
NEPM 2013 Soil Commercial/Ind	Generic EIL for dustrial, mg/kg						640				
Sample	Depth (m)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
TP1	0-0.15	<0.1	<0.2	<0.2	<0.3	<0.2	<0.2	<0.6	<0.5	<0.1	<0.1
TP2	0-0.15	<0.1	<0.2	<0.2	<0.3	<0.2	<0.2	<0.6	<0.5	<0.1	<0.1
TP3	0-0.15	<0.1	<0.2	<0.2	<0.3	<0.2	<0.2	<0.6	<0.5	<0.1	<0.1
TP4	0-0.15	<0.1	<0.2	<0.2	<0.3	<0.2	<0.2	<0.6	<0.5	<0.1	<0.1
TP5	0-0.15	<0.1	<0.2	<0.2	<0.3	<0.2	<0.2	<0.6	<0.5	<0.1	<0.1
TP6	0-0.15	<0.1	<0.2	<0.2	<0.3	<0.2	<0.2	<0.6	<0.5	<0.1	<0.1
D1	0-0.15	<0.1	<0.2	<0.2	<0.3	<0.2	<0.2	<0.6	<0.5	<0.1	<0.1

 Table 20. Pesticides analytical results. Values are presented as mg/kg. Not Analysed (N.A.)

NEPM 2013 Commercic	NEPM 2013 Commercial/Industrial Soil HSL-D		Bonded ACM 0.05%w/w	AF/FA 0.001%w/w
Sample	Depth (m)	Yes/No	AS4964	NEPM Gravimetric Method
TP1	0-0.15	No	<0.01%w/w	N.A.
TP2	0-0.15	No	<0.01%w/w	N.A.
TP3	0-0.15	YES Chrysotile, Crocidolite	0.03%w/w	0.027%w/w
TP4	0-0.15	No	<0.01%w/w	N.A.
TP5	0-0.15	No	<0.01%w/w	<0.001%w/w
TP6	0-0.15	No	<0.01%w/w	N.A.

Table 21. Asbestos analytical results. Not Analysed (N.A.)

ANALYTICAL REPORT

- CLIENT DETAILS		LABORATORY DE	LABORATORY DETAILS			
Contact	Admin	Manager	Shane McDermott			
Client	NEO CONSULTING PTY LTD	Laboratory	SGS Alexandria Environmental			
Address	PO BOX 279 RIVERSTONE NSW 2765	Address	Unit 16, 33 Maddox St Alexandria NSW 2015			
Telephone	0416 680 375	Telephone	+61 2 8594 0400			
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499			
Email	admin@neoconsulting.com.au	Email	au.environmental.sydney@sgs.com			
Project	N09489	SGS Reference	SE268113 R0			
Order Number	N09489	Date Received	12/7/2024			
Samples	9	Date Reported	20/7/2024			

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

Sample #1,2,4,6: A portion of the sample supplied has been sub-sampled for asbestos analysis in soil according to SGS In-house procedures. We therefore cannot guarantee that the sub-sample is representative of the entire sample supplied. SGS Industries and Environment recommends supplying approximately 50-100g of sample in a separate container.

Sample #3: Asbestos found in approx 25x15x4mm cement sheet fragments x2 and found in approx 12x4x3mm cement sheet fragments x3. Asbestos analysed by Approved Identifier Yusuf Kuthpudin

SIGNATORIES

Akheeqar BENIAMEEN Chemist

Shane MCDERMOTT Laboratory Manager

Senior Chemist

Teresa NGUYEN Organic Chemist

Kamrul AHSAN Senior Chemist

kintn .

Lv Kim HA Organic Section Head

C

Yusuf KUTHPUDIN Asbestos Analyst

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC

Alexandria NSW 2015 Alexandria NSW 2015

t +61 2 8594 0400 Australia f +61 2 8594 0499 Australia

www.sgs.com.au

VOC's in Soil [AN433] Tested: 15/7/2024

			TP1	TP2	TP3	TP4	TP5
			SOIL	SOIL	SOIL	SOIL	SOIL
			12/7/2024	12/7/2024	12/7/2024	12/7/2024	12/7/2024
PARAMETER	UOM	LOR	SE268113.001	SE268113.002	SE268113.003	SE268113.004	SE268113.005
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX*	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			TP6	D1	TS	ТВ
			SOIL	SOIL	SOIL	SOIL
			12/7/2024	12/7/2024	12/7/2024	12/7/2024
PARAMETER	UOM	LOR	SE268113.006	SE268113.007	SE268113.008	SE268113.009
Benzene	mg/kg	0.1	<0.1	<0.1	[94%]	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	[93%]	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	[92%]	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	[92%]	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	[92%]	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	-	<0.3
Total BTEX*	mg/kg	0.6	<0.6	<0.6	-	<0.6
Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	-	<0.1

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 15/7/2024

			TP1	TP2	ТР3	TP4	TP5
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	SE268113.001	SE268113.002	SE268113.003	SE268113.004	SE268113.005
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			TP6	D1
			SOIL	SOIL
			12/7/2024	
PARAMETER	UOM	LOR	SE268113.006	SE268113.007
TRH C6-C9	mg/kg	20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 15/7/2024

			TP1	TP2	TP3	TP4	TP5
					001	001	001
			SOIL	SUIL	SOIL	SOIL	SUIL
			12/7/2024	12/7/2024	12/7/2024	12/7/2024	12/7/2024
PARAMETER	UOM	LOR	SE268113.001	SE268113.002	SE268113.003	SE268113.004	SE268113.005
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			TP6	D1
			SOIL - 12/7/2024	SOIL - 12/7/2024
PARAMETER	UOM	LOR	SE268113.006	SE268113.007
TRH C10-C14	mg/kg	20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210

ANALYTICAL RESULTS

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 15/7/2024

			TP1	TP2	TP3	TP4	TP5
					00"	00"	00"
			SOIL	SOIL	SOIL	SOIL	SUIL
			12/7/2024	12/7/2024	12/7/2024	12/7/2024	12/7/2024
PARAMETER	UOM	LOR	SE268113.001	SE268113.002	SE268113.003	SE268113.004	SE268113.005
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0*<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor*<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

			TP6	D1
			SOIL	SOIL
			-	-
			12/7/2024	
PARAMETER	UOM	LOR	SE268113.006	SE268113.007
Naphthalene	mg/kg	0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td></lor=0*<>	TEQ (mg/kg)	0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td></lor=lor*<>	TEQ (mg/kg)	0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8

OC Pesticides in Soil [AN420] Tested: 15/7/2024

			TP1	TP2	TP3	TP4	TP5
			SOIL	SOIL	SOIL	SOIL	SOIL
			12/7/2024			12/7/2024	12/7/2024
PARAMETER	UOM	LOR	SE268113.001	SE268113.002	SE268113.003	SE268113.004	SE268113.005
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane (gamma BHC)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1
Total OC VIC EPA	mg/kg	1	<1	<1	<1	<1	<1

OC Pesticides in Soil [AN420] Tested: 15/7/2024 (continued)

			TP6
			SOIL
			12/7/2024
PARAMETER	UOM	LOR	SE268113.006
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1
Lindane (gamma BHC)	mg/kg	0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1
Aldrin	mg/kg	0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1
o,p'-DDE*	mg/kg	0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2
Endrin	mg/kg	0.2	<0.2
o,p'-DDD*	mg/kg	0.1	<0.1
o,p'-DDT*	mg/kg	0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1
Endrin aldehyde	mg/kg	0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1
Endrin ketone	mg/kg	0.1	<0.1
Isodrin	mg/kg	0.1	<0.1
Mirex	mg/kg	0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1
Total OC VIC EPA	mg/kg	1	<1

OP Pesticides in Soil [AN420] Tested: 15/7/2024

			TP1	TP2	TP3	TP4	TP5
PARAMETER	UOM	LOR	SOIL - 12/7/2024 SE268113.001	SOIL - 12/7/2024 SE268113.002	SOIL - 12/7/2024 SE268113.003	SOIL - 12/7/2024 SE268113.004	SOIL - 12/7/2024 SE268113.005
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

			TP6
PARAMETER	UOM	LOR	SOIL - 12/7/2024 SE268113.006
Dichlorvos	mg/kg	0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2
Malathion	mg/kg	0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2
Methidathion	mg/kg	0.5	<0.5
Ethion	mg/kg	0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7

PCBs in Soil [AN420] Tested: 15/7/2024

			TP1	TP2	TP3	TP4	TP5
			SOIL	SOIL	SOIL	SOIL	SOIL
			12/7/2024	12/7/2024	12/7/2024	12/7/2024	12/7/2024
PARAMETER	UOM	LOR	SE268113.001	SE268113.002	SE268113.003	SE268113.004	SE268113.005
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			TP6
			SOIL - 12/7/2024
PARAMETER	UOM	LOR	SE268113.006
Arochlor 1016	mg/kg	0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1

ANALYTICAL RESULTS

SE268113 R0

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 15/7/2024

			TP1	TP2	TP3	TP4	TP5
			SOIL	SOIL	SOIL	SOIL	SOIL
			12/7/2024				
PARAMETER	UOM	LOR	SE268113.001	SE268113.002	SE268113.003	SE268113.004	SE268113.005
Arsenic, As	mg/kg	1	7	7	6	5	4
Cadmium, Cd	mg/kg	0.3	<0.3	1.1	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	18	20	18	13	14
Copper, Cu	mg/kg	0.5	23	67	7.7	8.2	60
Lead, Pb	mg/kg	1	67	170	24	22	120
Nickel, Ni	mg/kg	0.5	5.8	5.8	3.8	4.0	9.7
Zinc, Zn	mg/kg	2	170	470	32	30	250

			TP6	D1
			SOIL -	SOIL
PARAMETER	ИОМ	LOR	12/7/2024 SE268113.006	12/7/2024 SE268113.007
Arsenic, As	mg/kg	1	4	4
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	11	10
Copper, Cu	mg/kg	0.5	27	28
Lead, Pb	mg/kg	1	44	45
Nickel, Ni	mg/kg	0.5	5.1	5.8
Zinc, Zn	mg/kg	2	62	63

Mercury in Soil [AN312] Tested: 15/7/2024

			TP1	TP2	TP3	TP4	TP5
			SOIL	SOIL	SOIL	SOIL	SOIL
			12/7/2024				
PARAMETER	UOM	LOR	SE268113.001	SE268113.002	SE268113.003	SE268113.004	SE268113.005
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	0.09

			TP6	D1
			SOIL	SOIL
			12/7/2024	
PARAMETER	UOM	LOR	SE268113.006	SE268113.007
Mercury	mg/kg	0.05	0.11	0.14

Moisture Content [AN002] Tested: 15/7/2024

			TP1	TP2	TP3	TP4	TP5
			SOIL	SOIL	SOIL	SOIL	SOIL
			12/7/2024				
PARAMETER	UOM	LOR	SE268113.001	SE268113.002	SE268113.003	SE268113.004	SE268113.005
% Moisture	%w/w	1	14.0	14.4	10.7	5.0	18.8

			TP6	D1	ТВ
			SOIL	SOIL	SOIL
			12/7/2024		
PARAMETER	UOM	LOR	SE268113.006	SE268113.007	SE268113.009
% Moisture	%w/w	1	22.8	23.4	<1.0

Fibre Identification in soil [AS4964/AN602] Tested: 17/7/2024

			TP1	TP2	TP3	TP4	TP5
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			12/7/2024				12/7/2024
PARAMETER	UOM	LOR	SE268113.001	SE268113.002	SE268113.003	SE268113.004	SE268113.005
Date Analysed*	No unit	-	19/07/2024 00:00	19/07/2024 00:00	18/07/2024 00:00	19/07/2024 00:00	18/07/2024 00:00
Asbestos Detected	No unit	-	No	No	Yes	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	>0.01	<0.01	<0.01

			TP6
			SOIL
			12/7/2024
PARAMETER	UOM	LOR	SE268113.006
Date Analysed*	No unit	-	19/07/2024 00:00
Asbestos Detected	No unit	-	No
Estimated Fibres*	%w/w	0.01	<0.01

Gravimetric Determination of Asbestos in Soil [AN605] Tested: 17/7/2024

			TP3	TP5
			SOIL	SOIL
			-	-
PARAMETER	ЦОМ	LOR	12/7/2024 SE268113 003	12///2024 SE268113.005
	0011	LON	32200113.003	32200113.003
Date Analysed*	No unit	-	18/07/2024 00:00	18/07/2024 00:00
Total Sample Weight*	g	1	627	650
Bonded ACM in >7mm Sample*	g	0.001	1.24	<0.001
AF/FA in >2mm to <7mm Sample*	g	0.00001	0.172	<0.00001
AF/FA in <2mm Sample*	g	0.00001	<0.00001	<0.00001
Asbestos in soil (>7mm ACM)*	%w/w	0.01	0.03	<0.01
Asbestos in soil (>2mm to <7mm AF/FA)*	%w/w	0.001	0.027	<0.001
Asbestos in soil (<2mm AF/FA)*	%w/w	0.001	<0.001	<0.001
Asbestos in soil (<7mm AF/FA)*	%w/w	0.001	0.027	<0.001
Fibre Type*	No unit	-	Chrysotile, Crocidolite	NAD

METHOD	
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by AAS or ICP as per USEPA Method 200.8.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoverable Hydrocarbons - Silica (TRH-Si) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D). Total PAH calculated from individual analyte detections at or above the limit of reporting.
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN602/AS4964	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic 'clues', which provide a reasonable degree of certainty, dispersion staining is a mandatory 'clue' for positive identification. If sufficient 'clues' are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602/AS4964	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602/AS4964	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection/reporting limit (RL) of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602/AS4964	The sample can be reported "no asbestos found at the reporting limit (RL) of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable ' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

METHOD SUMMARY

AN605	This technique gravimetrically determines the mass of Bonded Asbestos Containing Material retained on a 7mm Sieve and assumes that 15% of this ACM is asbestos. This calculated asbestos weight is then calculated as a percentage of the total sample weight. Any fibrous asbestos (FA) found in this fraction will be added to the 2-7mm fraction and its mass recorded there.
AN605	This technique also gravimetrically determines the mass of Fibrous Asbestos (FA) and Asbestos Fines (AF) Containing Material retained on and passing a 2mm sieve post 7mm sieving. Assumes that FA and AF are 100% asbestos containing. This calculated asbestos weight is then calculated as a percentage of the total sample weight. This does not include free/respirable fibres which are only observed by standard trace analysis as per AN602.
AN605	Bonded asbestos containing material (Bonded ACM) comprises asbestos-containing-material which is sound in condition. Fibrous asbestos (FA) comprises friable asbestos material and includes severely weathered cement sheet, insulation products and woven asbestos material. Asbestos fines (AF) includes free fibres, small fibre bundles and also small fragments of bonded ACM that passes through a 7mm sieve - which implies that the bonded ACM fragments have a substantial degree of damage which increases the potential for fibre release.
AN-605	Insofar as is technically feasible, this report is consistent with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment Remediation and Management of Asbestos - Contaminated Sites in Western Australia - May 2009 and NEPM 1999 (2013) schedule B1 section 4

FOOTNOTES -

*	NATA accreditation does not cover	-	Not analysed.	UOM	Unit of Measure.
	the performance of this service.	NVL	Not validated.	LOR	Limit of Reporting.
**	Indicative data, theoretical holding	IS	Insufficient sample for analysis.	¢↓	Raised/lowered Limit of
	time exceeded.	LNR	Sample listed, but not received.		Reporting.
***	Indicates that both * and ** apply.		•		

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	LS	
Contact Client Address	Admin NEO CONSULTING PTY LTD PO BOX 279 RIVERSTONE NSW 2765	Manager Laboratory Address	Shane McDermott SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	0416 680 375	Telephone	+61 2 8594 0400	
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499	
Email	admin@neoconsulting.com.au	Email	au.environmental.sydney@sgs.com	
Project	N09489	SGS Reference	SE268113 R0	
Order Number	N09489	Date Received	12 Jul 2024	
Samples	9	Date Reported	20 Jul 2024	

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Duplicate

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

1 item

Sample counts by matrix	9 Soil	Type of documentation received	COC	
Date documentation received	12/7/2024	Samples received in good order	Yes	
Samples received without headspace	Yes	Sample temperature upon receipt	7.5°C	
Sample container provider	SGS	Turnaround time requested	Standard	
Samples received in correct containers	Yes	Sufficient sample for analysis	Yes	
Sample cooling method	Ice Bricks	Samples clearly labelled	Yes	
Complete documentation received	Yes			
•				
	103			

SGS Australia Pty Ltd ABN 44 000 964 278

SAMPLE SUMMARY

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 t +61 2 8594 0400

Australia

Australia

www.sgs.com.au f +61 2 8594 0499

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

Fibre Identification in soil							Method: ME-(AU)	-[ENV]AS4964/AN602
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP1	SE268113.001	LB317848	12 Jul 2024	12 Jul 2024	12 Jul 2025	17 Jul 2024	12 Jul 2025	19 Jul 2024
TP2	SE268113.002	LB317848	12 Jul 2024	12 Jul 2024	12 Jul 2025	17 Jul 2024	12 Jul 2025	19 Jul 2024
TP3	SE268113.003	LB317845	12 Jul 2024	12 Jul 2024	12 Jul 2025	17 Jul 2024	12 Jul 2025	19 Jul 2024
TP4	SE268113.004	LB317848	12 Jul 2024	12 Jul 2024	12 Jul 2025	17 Jul 2024	12 Jul 2025	19 Jul 2024
TP5	SE268113.005	LB317845	12 Jul 2024	12 Jul 2024	12 Jul 2025	17 Jul 2024	12 Jul 2025	19 Jul 2024
TP6	SE268113.006	LB317848	12 Jul 2024	12 Jul 2024	12 Jul 2025	17 Jul 2024	12 Jul 2025	19 Jul 2024
Gravimetric Determination of	Asbestos in Soil						Method: I	ME-(AU)-[ENV]AN605
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP3	SE268113.003	LB317845	12 Jul 2024	12 Jul 2024	08 Jan 2025	17 Jul 2024	08 Jan 2025	19 Jul 2024
TP5	SE268113.005	LB317845	12 Jul 2024	12 Jul 2024	08 Jan 2025	17 Jul 2024	08 Jan 2025	19 Jul 2024
Mercury in Soil							Method: I	ME-(AU)-[ENV]AN312
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP1	SE268113.001	LB317679	12 Jul 2024	12 Jul 2024	09 Aug 2024	15 Jul 2024	09 Aug 2024	17 Jul 2024
TP2	SE268113.002	LB317679	12 Jul 2024	12 Jul 2024	09 Aug 2024	15 Jul 2024	09 Aug 2024	17 Jul 2024
TP3	SE268113.003	LB317679	12 Jul 2024	12 Jul 2024	09 Aug 2024	15 Jul 2024	09 Aug 2024	17 Jul 2024
TP4	SE268113.004	LB317679	12 Jul 2024	12 Jul 2024	09 Aug 2024	15 Jul 2024	09 Aug 2024	17 Jul 2024
TP5	SE268113.005	LB317679	12 Jul 2024	12 Jul 2024	09 Aug 2024	15 Jul 2024	09 Aug 2024	17 Jul 2024
TP6	SE268113.006	LB317679	12 Jul 2024	12 Jul 2024	09 Aug 2024	15 Jul 2024	09 Aug 2024	17 Jul 2024
D1	SE268113.007	LB317679	12 Jul 2024	12 Jul 2024	09 Aug 2024	15 Jul 2024	09 Aug 2024	17 Jul 2024
Moisture Content							Method:	ME-(AU)-[ENV]AN002
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP1	SE268113.001	LB317677	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	20 Jul 2024	17 Jul 2024
TP2	SE268113.002	LB317677	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	20 Jul 2024	17 Jul 2024
TP3	SE268113.003	LB317677	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	20 Jul 2024	17 Jul 2024
TP4	SE268113.004	LB317677	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	20 Jul 2024	17 Jul 2024
TP5	SE268113.005	LB317677	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	20 Jul 2024	17 Jul 2024
TP6	SE268113.006	LB317677	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	20 Jul 2024	17 Jul 2024
D1	SE268113.007	LB317677	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	20 Jul 2024	17 Jul 2024
ТВ	SE268113.009	LB317677	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	20 Jul 2024	17 Jul 2024
OC Pesticides in Soil							Method: I	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP1	SE268113.001	LB317675	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	24 Aug 2024	17 Jul 2024
TP2	SE268113.002	LB317675	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	24 Aug 2024	17 Jul 2024
TP3	SE268113.003	LB317675	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	24 Aug 2024	17 Jul 2024
TP4	SE268113.004	LB317675	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	24 Aug 2024	17 Jul 2024
TP5	SE268113.005	LB317675	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	24 Aug 2024	17 Jul 2024
TP6	SE268113.006	LB317675	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	24 Aug 2024	17 Jul 2024
D1	SE268113.007	LB317675	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	24 Aug 2024	17 Jul 2024
OP Pesticides in Soil							Method: I	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP1	SE268113.001	LB317675	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	24 Aug 2024	17 Jul 2024
TP2	SE268113.002	LB317675	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	24 Aug 2024	17 Jul 2024
TP3	SE268113.003	LB317675	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	24 Aug 2024	17 Jul 2024
TP4	SE268113.004	LB317675	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	24 Aug 2024	17 Jul 2024
TP5	SE268113.005	LB317675	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	24 Aug 2024	17 Jul 2024
TP6	SE268113.006	LB317675	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	24 Aug 2024	17 Jul 2024
D1	SE268113.007	LB317675	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	24 Aug 2024	17 Jul 2024
PAH (Polynuclear Aromatic H	hydrocarbons) in Soil						Method: I	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP1	SE268113.001	LB317675	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	24 Aug 2024	17 Jul 2024
TP2	SE268113.002	LB317675	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	24 Aug 2024	17 Jul 2024
TP3	SE268113.003	LB317675	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	24 Aug 2024	17 Jul 2024
TP4	SE268113.004	LB317675	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	24 Aug 2024	17 Jul 2024
TP5	SE268113.005	LB317675	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	24 Aug 2024	17 Jul 2024
TP6	SE268113.006	LB317675	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	24 Aug 2024	17 Jul 2024
D1	SE268113.007	LB317675	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	24 Aug 2024	17 Jul 2024

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

Sample Name O.C. Ref Sample Mo. O.C. Ref Sample Mode Received Extraction Dutor Extraction Dutor Analysis Dus	PCBs in Soil							Method: N	IE-(AU)-[ENV]AN420
Th1 SEQM10.011 ID17675 12 AU 2024 12 AU 2024 12 AU 2024 15 AU 2024 15 AU 2024 17 AU 2024 TP2 SERVIT-1008 IEXTYP75 12 AU 2024 12 AU 2024 15 AU 2024 15 AU 2024 17 AU 2024 17 AU 2024 TP3 SERVIT-10084 IEXTYP75 12 AU 2024 12 AU 2024 15 AU 2024 12 AU 2024	Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP2SEQ0011002LB31767512 Ju 202412 Ju 202420 Ju 202415 Ju 202414 Ju 202417 Ju 2024TP3SEQ0011004LB31767512 Ju 202412 Ju 202420 Ju 202415 Ju 202424 Ju 202414 Ju 202417 Ju 2024TP4SEQ0011006LB31767512 Ju 202412 Ju 202420 Ju 202415 Ju 202424 Ju 202414 Ju 202414 Ju 202417 Ju 2024TP4SEQ0011007LB31767512 Ju 202412 Ju 202420 Ju 202415 Ju 202424 Ju 202415 Ju 202424 Ju 202414 Ju 2024TC4SEQ0011001LB31767512 Ju 202412 Ju 202416 Ju 202416 Ju 20240 Ju 202417 Ju 2024TP4SEQ0011001LB31767512 Ju 202412 Ju 202416 Ju 20240 Ju 202416 Ju 20240 Ju 2024TP4SEQ0011001LB31767512 Ju 202412 Ju 20240 Ju 202416 Ju 20240 Ju 202417 Ju 2024TP5SEQ0011001LB31767512 Ju 202412 Ju 20240 Ju 202416 Ju 20240 Ju 202417 Ju 2024TP5SEQ0011001LB31767512 Ju 202412 Ju 202416 Ju 202416 Ju 20240 Ju 202417 Ju 2024TP6SEQ0011001LB31767512 Ju 202412 Ju 202416 Ju 202416 Ju 202416 Ju 202417 Ju 2024TP6SEQ0011001LB31767512 Ju 202412 Ju 202416 Ju 202416 Ju 202416 Ju 202417 Ju 2024TP6SEQ0011001LB31767512 Ju 2024 </td <td>TP1</td> <td>SE268113.001</td> <td>LB317675</td> <td>12 Jul 2024</td> <td>12 Jul 2024</td> <td>26 Jul 2024</td> <td>15 Jul 2024</td> <td>24 Aug 2024</td> <td>17 Jul 2024</td>	TP1	SE268113.001	LB317675	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	24 Aug 2024	17 Jul 2024
TP3 SE286 13005 LB317975 12.0.2024 12.0.4.2024 20.0.4.2024 15.0.3024 24.A.g204 17.0.4.024 TP4 SE286 13006 LB317975 12.0.42024 12.0.42024 20.0.42024 15.0.3024 24.A.g204 17.0.4.024 TP5 SE286 13007 LB317975 12.0.42024 12.0.42024 20.0.4024 15.0.3024 24.A.g204 17.0.4.024 D1 SE286 13007 LB317975 12.0.42024 12.0.42024 60.0.4024 15.0.3024 64.A.g2026 17.0.4.024 D1 SE286 13005 LB31797 12.0.42024 12.0.42024 66.A.g2025 15.0.4.0204 64.A.g2026 17.0.4.024 TP1 SE286 13005 LB31797 12.0.4204 12.0.4204 66.A.g2025 15.0.4.0204 66.A.g2026 15.0.4.0204 7.0.4.024 TP4 SE286 13.005 LB31797 12.0.4.0204 12.0.4.024 66.A.g2026 15.0.4.0204 64.A.g2026 17.0.4.024<	TP2	SE268113.002	LB317675	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	24 Aug 2024	17 Jul 2024
TP4 SE28811306 LB317875 T 2 Ju 2024 12 Ju 2024 <td>TP3</td> <td>SE268113.003</td> <td>LB317675</td> <td>12 Jul 2024</td> <td>12 Jul 2024</td> <td>26 Jul 2024</td> <td>15 Jul 2024</td> <td>24 Aug 2024</td> <td>17 Jul 2024</td>	TP3	SE268113.003	LB317675	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	24 Aug 2024	17 Jul 2024
TP5 SERVENT 10006 LB317975 12 Jul 2024 12 Jul 2024 12 Jul 2024 15 Jul 2024 15 Jul 2024 24 Aug 2024 17 Jul 2024 D1 SEB9113.007 LB317975 12 Jul 2024 12 Jul 2024 28 Jul 2024 15 Jul 2024 24 Aug 2024 17 Jul 2024 D1 SEB9113.007 LB317975 12 Jul 2024 12 Jul 2024 28 Jul 2024 15 Jul 2024 24 Aug 2024 17 Jul 2024 TP4 SEB9113.007 LB317978 12 Jul 2024 12 Jul 2024 01	TP4	SE268113.004	LB317675	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	24 Aug 2024	17 Jul 2024
TP6 SE28111000 IB517767 12. Jul 2024 12. Jul 2024 13. Jul 2024 13. Jul 2024 14. Jul 2024 17. Jul 2024 Cl Stample No. CG Ref Sample No.<	TP5	SE268113.005	LB317675	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	24 Aug 2024	17 Jul 2024
D1 SE28911307 B517075 12, JJ 2024 12, JJ 2024 36 JJ 2024 15 JJ 2024 12 JJ 2024 17 JJ 2024 Coll Seconda Lemma h SolWates Soldan/Matrice Lot VCOES Extraction Due Extrac	TP6	SE268113.006	LB317675	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	24 Aug 2024	17 Jul 2024
Stanip kone Sample Ac. OC Ref Sample Ac.	D1	SE268113.007	LB317675	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	24 Aug 2024	17 Jul 2024
Sample Nume Sample Num OC Ref Sample Num Received Extracted Dub Analysie Dub Analysed TP1 SE28113.001 L5317678 12 Jul 2024 12 Jul 2024 08 Jan 2025 15 Jul 2024 08 Jan 2025 17 Jul 2024 TP3 SE28113.004 LB317678 12 Jul 2024 12 Jul 2024 08 Jan 2025 15 Jul 2024 08 Jan 2025 17 Jul 2024 TP6 SE286113.004 LB317678 12 Jul 2024 12 Jul 2024 08 Jan 2025 15 Jul 2024 08 Jan 2025 17 Jul 2024 D1 SE28613.007 LB317678 12 Jul 2024 12 Jul 2024 08 Jan 2025 15 Jul 2024 08 Jan 2025 17 Jul 2024 D1 SE28613.007 LB317678 12 Jul 2024 12 Jul 2024 08 Jan 2025 15 Jul 2024 08 Jan 2025 17 Jul 2024 TP4 SE28613.007 LB317675 12 Jul 2024 12 Jul 2024 12 Jul 2024 15 Jul 2024 24 Aug 2024 <td>Total Recoverable Elements in a</td> <td>Soil/Waste Solids/Ma</td> <td>terials by ICPOES</td> <td></td> <td></td> <td></td> <td></td> <td>Method: ME-(AU)</td> <td>-[ENV]AN040/AN320</td>	Total Recoverable Elements in a	Soil/Waste Solids/Ma	terials by ICPOES					Method: ME-(AU)	-[ENV]AN040/AN320
TP1 SER8113.00 LB31787 12.u. 2024 <	Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP2 SER80113.002 LB31778* 12 JA 2024	TP1	SE268113.001	LB317678	12 Jul 2024	12 Jul 2024	08 Jan 2025	15 Jul 2024	08 Jan 2025	17 Jul 2024
TP3 SE288113.00 LEB17778 12.4/2024	TP2	SE268113.002	LB317678	12 Jul 2024	12 Jul 2024	08 Jan 2025	15 Jul 2024	08 Jan 2025	17 Jul 2024
TP4 SE288113.004 LB317678 12 Jul 2024 12 Jul 2024 15 Jul 2024 08 Jan 2025 17 Jul 2024 TP5 SE288113.006 LB317678 12 Jul 2024 12 Jul 2024 08 Jan 2025 15 Jul 2024 08 Jan 2025 17 Jul 2024 D1 SE288113.006 LB317678 12 Jul 2024 12 Jul 2024 08 Jan 2025 15 Jul 2024 08 Jan 2025 17 Jul 2024 D1 SE288113.006 LB317678 12 Jul 2024 12 Jul 2024 08 Jan 2025 17 Jul 2024 TP4 (Total Recoverable Hydrocaboon) in Sol OC Ref Sample Mane Extraction Dus Extracted Analysis Dus Anal	TP3	SE268113.003	LB317678	12 Jul 2024	12 Jul 2024	08 Jan 2025	15 Jul 2024	08 Jan 2025	17 Jul 2024
TP6 SE28011.000 LB317078 12 Jul 2024 12 Jul 2024 12 Jul 2024 15 Jul 2026 16 Jul 2024 08 Jan 2025 17 Jul 2024 D1 SE28011.3.007 LB317078 12 Jul 2024 12 Jul 2024 08 Jan 2025 17 Jul 2024 D1 SE28011.3.007 LB317078 12 Jul 2024 12 Jul 2024 08 Jan 2025 17 Jul 2024 Sample Name Sample No. O C Ref Sample No. O C Ref Sample No. Analysed TP4 SE28011.3.001 LB317075 12 Jul 2024 12 Jul 2024 12 Jul 2024 15 Jul 2024 24 Jug 2024 17 Jul 2024 TP4 SE28011.3.001 LB317075 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 24 Jug 2024 17 Jul 2024 TP4 SE28011.3.001 LB317075 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 24 Jug 2024 17 Jul 2024 TP5 SE28011.3.001 LB317075 12 Jul 2024 12 Jul 2024 15 Jul 2024 14 Jul 2024 17 Jul 2024 TP5 SE28011.3.001 <td>TP4</td> <td>SE268113.004</td> <td>LB317678</td> <td>12 Jul 2024</td> <td>12 Jul 2024</td> <td>08 Jan 2025</td> <td>15 Jul 2024</td> <td>08 Jan 2025</td> <td>17 Jul 2024</td>	TP4	SE268113.004	LB317678	12 Jul 2024	12 Jul 2024	08 Jan 2025	15 Jul 2024	08 Jan 2025	17 Jul 2024
TP6 SE28913.000 LB317678 12.Jul 2024 12.Jul 2024 08.Jun 2025 15.Jul 2024 08.Jun 2025 17.Jul 2024 D1 SE28913.000 LB317678 12.Jul 2024 12.Jul 2024 08.Jun 2025 15.Jul 2024 08.Jun 2025 17.Jul 2024 Sample Name Sample No. O.E. R.f. Sample No. O.E. R.f. Analyses Dui Analyses Dui Analyses Analyses Analyses Analyses Trul Jul 2024 12.Jul 2024 12.Jul 2024 15.Jul 2024 24.Jug 2024 17.Jul 2024	TP5	SE268113.005	LB317678	12 Jul 2024	12 Jul 2024	08 Jan 2025	15 Jul 2024	08 Jan 2025	17 Jul 2024
D1 SE28813.007 LB317678 12.Jul 2024 12.Jul 2024 08 Jan 2025 15.Jul 2024 09 Jan 2025 17.Jul 2024 TBH (Total Recoverable Hydrocarboni) in SQI Mathem Stample No. CC Ref Sample No. CA Recolved Extraction Due Extraction Extraction Due Analysis Due An	TP6	SE268113.006	LB317678	12 Jul 2024	12 Jul 2024	08 Jan 2025	15 Jul 2024	08 Jan 2025	17 Jul 2024
The Hance Sample No. OC Ref Sample No. C Ref Sample No. C Ref Analysed TPI State No. C Ref Sample No. C Ref Analysed TFI TPI State Nill No. Last to the Nill No. C Ref Analysed TFI Nill No. C Ref C Ref <th< td=""><td>D1</td><td>SE268113.007</td><td>LB317678</td><td>12 Jul 2024</td><td>12 Jul 2024</td><td>08 Jan 2025</td><td>15 Jul 2024</td><td>08 Jan 2025</td><td>17 Jul 2024</td></th<>	D1	SE268113.007	LB317678	12 Jul 2024	12 Jul 2024	08 Jan 2025	15 Jul 2024	08 Jan 2025	17 Jul 2024
Sample Name Sample No. QC Raf Sampled Received Extraction Nanaysei Due Analysei Due TP1 SE288113.001 LB317675 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 24 Aug 2024 17 Jul 2024 TP2 SE288113.002 LB317675 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 24 Aug 2024 17 Jul 2024 TP3 SE288113.003 LB317675 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 24 Aug 2024 17 Jul 2024 TP5 SE288113.006 LB317675 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 24 Aug 2024 17 Jul 2024 TP6 SE288113.007 LB317675 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 24 Aug 2024 17 Jul 2024 VCC's In Sol Sample No. OC Ref. Sample Received Extraction Due Extraction Due Analysis Due Analysis TP1 SE288113.001 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 <td>TRH (Total Recoverable Hydrod</td> <td>carbons) in Soil</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Method: N</td> <td>/IE-(AU)-[ENV]AN403</td>	TRH (Total Recoverable Hydrod	carbons) in Soil						Method: N	/IE-(AU)-[ENV]AN4 03
TP1 SE288113.001 LB317675 12. Jul 2024 12. Jul 2024 28. Jul 2024 15. Jul 2024 24. Aug 2024 17. Jul 2024 TP2 SE288113.002 LB317675 12. Jul 2024 12. Jul 2024 28. Jul 2024 15. Jul 2024 24. Aug 2024 17. Jul 2024 TP4 SE288113.003 LB317675 12. Jul 2024 12. Jul 2024 28. Jul 2024 15. Jul 2024 24. Aug 2024 17. Jul 2024 TP5 SE288113.006 LB317675 12. Jul 2024 12. Jul 2024 28. Jul 2024 15. Jul 2024 24. Aug 2024 17. Jul 2024 D1 SE288113.007 LB317675 12. Jul 2024 12. Jul 2024 28. Jul 2024 15. Jul 2024 24. Aug 2024 17. Jul 2024 D1 SE288113.007 LB317675 12. Jul 2024 12. Jul 2024 28. Jul 2024 15. Jul 2024 24. Aug 2024 17. Jul 2024 D1 SE288113.007 LB317676 12. Jul 2024 28. Jul 2024 15. Jul 2024 28. Jul 2024 17. Jul 2024 TP2 SE288113.001 LB317676 12. Jul 2024 12. Jul 2024	Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP2 SE268113.002 LB317675 12. Jul 2024 12. Jul 2024 28. Jul 2024 15. Jul 2024 24. Aug 2024 17. Jul 2024 TP3 SE268113.003 LB317675 12. Jul 2024 12. Jul 2024 28. Jul 2024 15. Jul 2024 24. Aug 2024 17. Jul 2024 TP4 SE268113.005 LB317675 12. Jul 2024 12. Jul 2024 28. Jul 2024 15. Jul 2024 24. Aug 2024 17. Jul 2024 TP6 SE268113.006 LB317675 12. Jul 2024 12. Jul 2024 28. Jul 2024 15. Jul 2024 24. Aug 2024 17. Jul 2024 D1 SE268113.007 LB317675 12. Jul 2024 12. Jul 2024 28. Jul 2024 15. Jul 2024 24. Aug 2024 17. Jul 2024 VOC*s In Soil Sample No. QC Ref Sample Not Received Extraction Due Extraction Analysis Due Analysed TP1 SE268113.002 LB317676 12. Jul 2024 12. Jul 2024 15. Jul 2024 26. Jul 2024 17. Jul 2024 TP3 SE268113.004 LB317676 12. Jul 2024 12. Jul 2024 15. Jul 2024 26. Jul 2024 17. Jul 2024 <td>TP1</td> <td>SE268113.001</td> <td>LB317675</td> <td>12 Jul 2024</td> <td>12 Jul 2024</td> <td>26 Jul 2024</td> <td>15 Jul 2024</td> <td>24 Aug 2024</td> <td>17 Jul 2024</td>	TP1	SE268113.001	LB317675	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	24 Aug 2024	17 Jul 2024
TP3 SE280113.003 LB317675 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 24 Aug 2024 17 Jul 2024 TP4 SE280113.004 LB317675 12 Jul 2024 12 Jul 2024 15 Jul 2024 15 Jul 2024 24 Aug 2024 17 Jul 2024 TP5 SE280113.006 LB317675 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 24 Aug 2024 17 Jul 2024 D1 SE280113.007 LB317675 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 24 Aug 2024 17 Jul 2024 VOC*a ISCI Sample No. QC Ref Sample No Received Extraction Duo Extracted Analysis Duo Nalysed TP1 SE288113.001 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 17 Jul 2024 TP2 SE288113.004 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 17 Jul 2024 TP3 SE288113.004 LB317676 12 Jul 2024 12 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024	TP2	SE268113.002	LB317675	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	24 Aug 2024	17 Jul 2024
TP4 SE288113.004 LB317675 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 24 Jug 2024 17 Jul 2024 TP5 SE288113.005 LB317675 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 24 Jug 2024 17 Jul 2024 D1 SE288113.007 LB317675 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 24 Jug 2024 17 Jul 2024 Method: KF4/MUS VOC* in Soll Sample No. QC Ref Sample Name Extraction Due Extracted Analysis Due Analysi	TP3	SE268113.003	LB317675	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	24 Aug 2024	17 Jul 2024
TP5 SE286113.005 LB317675 12 Ju 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 24 Aug 2024 17 Jul 2024 TP6 SE286113.006 LB317675 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 24 Aug 2024 17 Jul 2024 D1 SE286113.007 LB317675 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 24 Aug 2024 17 Jul 2024 VOC's in Soll Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysis Que Analysis Que 17 Jul 2024 TP2 SE286113.003 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 17 Jul 2024 17 Jul 2024 TP3 SE286113.004 LB317676 12 Jul 2024 12 Jul 2024 16 Jul 2024 26 Jul 2024 17 Jul 2024 TP4 SE286113.004 LB317676 12 Jul 2024 12 Jul 2024 16 Jul 2024 26 Jul 2024 17 Jul 2024 TP5 SE286113.007 LB317676 12 Jul 2024 12 Jul 2024<	TP4	SE268113.004	LB317675	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	24 Aug 2024	17 Jul 2024
IP6 SE288113.006 LB317675 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 24 Aug 2024 17 Jul 2024 D1 SE288113.007 LB317675 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 24 Aug 2024 17 Jul 2024 VOC's In Soil Sample No. CC Ref Sample No. CC Ref Sample No. Extraction Due Extraction Due Analysis Due Analysed TP1 SE288113.001 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 17 Jul 2024 TP3 SE288113.004 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP4 SE288113.005 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 17 Jul 2024 TP5 SE288113.005 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 17 Jul 2024	TP5	SE268113.005	LB317675	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	24 Aug 2024	17 Jul 2024
D1 SE268113.007 LB317675 12 Jul 2024 12 Jul 2024 28 Jul 2024 15 Jul 2024 24 Aug 2024 17 Jul 2024 Sample Name Sample No. QC Ref Sampled Received Extraction Extracted Analysis Due Analysis due TP1 SE268113.001 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP2 SE268113.003 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP3 SE268113.003 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP4 SE268113.005 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 D1 SE268113.007 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 D1 SE268113.007 LB317676 12 Jul 2024 12 Jul 2024 26 Ju	TP6	SE268113.006	LB317675	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	24 Aug 2024	17 Jul 2024
VOC's in Soil Sample Name Sample No. QC Ref Sample Quert Received Extraction Due Extracted Analysis Due Analysed TP1 SE268113.001 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP2 SE268113.003 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 17 Jul 2024 TP4 SE268113.004 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 17 Jul 2024 TP5 SE268113.005 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP6 SE268113.007 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TS SE268113.008 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 <tr< td=""><td>D1</td><td>SE268113.007</td><td>LB317675</td><td>12 Jul 2024</td><td>12 Jul 2024</td><td>26 Jul 2024</td><td>15 Jul 2024</td><td>24 Aug 2024</td><td>17 Jul 2024</td></tr<>	D1	SE268113.007	LB317675	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	24 Aug 2024	17 Jul 2024
Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed TP1 SE288113.001 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP2 SE288113.002 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP3 SE288113.003 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP4 SE288113.005 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP6 SE288113.006 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 D1 SE288113.006 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TS SE288113.009 LB317676 12 Jul 2024 12 Jul 2024 26 J	VOC's in Soil							Method: M	IE-(AU)-[ENV]AN433
TP1 SE288113.001 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP2 SE288113.002 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP3 SE288113.003 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP4 SE288113.004 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP5 SE288113.005 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 D1 SE288113.007 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TS SE288113.007 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TS SE288113.008 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 Ve	Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP2 SE268113.002 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP3 SE268113.003 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP4 SE268113.004 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP5 SE268113.005 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP6 SE268113.006 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 D1 SE268113.008 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 17 Jul 2024 17 Jul 2024 TS SE268113.008 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 17 Jul 2024 TB SE268113.009 LB317676 12 Jul 2024 12 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP1 SE268113.001 LB317676 12 Jul 2024<	TP1	SE268113.001	LB317676	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	26 Jul 2024	17 Jul 2024
TP3 SE268113.003 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP4 SE268113.004 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP5 SE268113.005 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP6 SE268113.005 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TS SE268113.006 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TS SE268113.008 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TB SE268113.009 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP1 SE268113.001 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP	TP2	SE268113.002	LB317676	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	26 Jul 2024	17 Jul 2024
TP4 SE268113.004 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP5 SE268113.005 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP6 SE268113.006 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 D1 SE268113.007 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TS SE268113.008 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TB SE268113.008 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 Volatile Petroleum Hydrocarbons In Soil Sample Name Sample No. QC Ref Sample No Received Extraction Due Extracted Analysis Due Analysis TP1 SE268113.001 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024	TP3	SE268113.003	LB317676	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	26 Jul 2024	17 Jul 2024
TP5 SE268113.005 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP6 SE268113.006 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 D1 SE268113.007 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TS SE268113.008 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TB SE268113.009 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 Volatile Petroleum Hydrocarbons In Soll Method: ME-(AU)-/ENV/JAN433 Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed TP1 SE268113.001 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP2 SE268113.002 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024	TP4	SE268113.004	LB317676	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	26 Jul 2024	17 Jul 2024
TP6 SE288113.006 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 D1 SE288113.007 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TS SE288113.008 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TB SE288113.009 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 Volatile Petroleum Hydrocarbons In Soil Method: ME-(AU)-(ENV/JAN433 Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed TP1 SE268113.001 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP2 SE268113.002 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024	TP5	SE268113.005	LB317676	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	26 Jul 2024	17 Jul 2024
D1 SE268113.007 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TS SE268113.008 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TB SE268113.009 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 Volatile Petroleum Hydrocarbons in Soll Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed TP1 SE268113.001 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP2 SE268113.002 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP3 SE268113.003 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024	TP6	SE268113.006	LB317676	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	26 Jul 2024	17 Jul 2024
TS SE268113.008 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TB SE268113.009 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 Volatile Petroleum Hydrocarbons in Soil Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed TP1 SE268113.001 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP2 SE268113.002 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP3 SE268113.002 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP4 SE268113.003 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP4 SE268113.004 LB317676	D1	SE268113.007	LB317676	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	26 Jul 2024	17 Jul 2024
TB SE268113.009 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 Volatile Petroleum Hydrocarbons In Soil Method: ME-(AU)-[ENV]AN433 Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed TP1 SE268113.001 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 17 Jul 2024 TP2 SE268113.002 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 17 Jul 2024 TP3 SE268113.003 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP4 SE268113.004 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP5 SE268113.005 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024	TS	SE268113.008	LB317676	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	26 Jul 2024	17 Jul 2024
Method: ME-(AU)-fENVJAN433 Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed TP1 SE268113.001 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 17 Jul 2024 TP2 SE268113.002 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 17 Jul 2024 TP3 SE268113.003 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 17 Jul 2024 TP4 SE268113.003 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP4 SE268113.004 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP5 SE268113.006 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 </td <td>тв</td> <td>SE268113.009</td> <td>LB317676</td> <td>12 Jul 2024</td> <td>12 Jul 2024</td> <td>26 Jul 2024</td> <td>15 Jul 2024</td> <td>26 Jul 2024</td> <td>17 Jul 2024</td>	тв	SE268113.009	LB317676	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	26 Jul 2024	17 Jul 2024
Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed TP1 SE268113.001 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP2 SE268113.002 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP3 SE268113.003 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP4 SE268113.004 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP4 SE268113.004 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP5 SE268113.005 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP6 SE268113.006 LB317676 12 Jul 2024 12 Jul 2024 26	Volatile Petroleum Hydrocarbon	is in Soil						Method: N	/IE-(AU)-[ENV]AN433
TP1 SE268113.001 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP2 SE268113.002 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP3 SE268113.003 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP4 SE268113.004 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP5 SE268113.005 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP6 SE268113.006 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 D1 SE268113.006 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 D1 SE268113.008 LB317676 12 Jul 2024 12 Jul 2024	Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP2 SE268113.002 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP3 SE268113.003 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP4 SE268113.004 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP5 SE268113.005 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP6 SE268113.006 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 D1 SE268113.007 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 D1 SE268113.007 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 D1 SE268113.008 LB317676 12 Jul 2024 12 Jul 2024 2	TP1	SE268113.001	LB317676	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	26 Jul 2024	17 Jul 2024
TP3 SE268113.003 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP4 SE268113.004 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP5 SE268113.005 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP6 SE268113.006 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 D1 SE268113.007 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 D1 SE268113.007 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 D1 SE268113.008 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024	TP2	SE268113.002	LB317676	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	26 Jul 2024	17 Jul 2024
TP4 SE268113.004 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP5 SE268113.005 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP6 SE268113.006 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 D1 SE268113.007 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 D1 SE268113.008 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 D1 SE268113.008 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024	TP3	SE268113.003	LB317676	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	26 Jul 2024	17 Jul 2024
TP5 SE268113.005 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TP6 SE268113.006 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 D1 SE268113.007 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TS SE268113.008 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024	TP4	SE268113.004	LB317676	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	26 Jul 2024	17 Jul 2024
TP6 SE268113.006 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 D1 SE268113.007 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TS SE268113.008 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024	TP5	SE268113.005	LB317676	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	26 Jul 2024	17 Jul 2024
D1 SE268113.007 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024 TS SE268113.008 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024	TP6	SE268113.006	LB317676	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	26 Jul 2024	17 Jul 2024
TS SE268113.008 B317676 12.bd 2024 12.bd 2024 26.bd 2024 15.bd 2024 26.bd 2024 15.bd 2024 17.bd 2024 17.bd 2024	D1	SE268113.007	LB317676	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	26 Jul 2024	17 Jul 2024
	TS	SE268113.008	LB317676	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	26 Jul 2024	17 Jul 2024
TB SE268113.009 LB317676 12 Jul 2024 12 Jul 2024 26 Jul 2024 15 Jul 2024 26 Jul 2024 17 Jul 2024	ТВ	SE268113.009	LB317676	12 Jul 2024	12 Jul 2024	26 Jul 2024	15 Jul 2024	26 Jul 2024	17 Jul 2024

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OC Pesticides in Soil				Method: M	E-(AU)-[ENV]AN42 (
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	TP1	SE268113.001	%	60 - 130%	119
	TP2	SE268113.002	%	60 - 130%	120
	TP3	SE268113.003	%	60 - 130%	116
	TP4	SE268113.004	%	60 - 130%	120
	TP5	SE268113.005	%	60 - 130%	116
	TP6	SE268113.006	%	60 - 130%	123
OP Pesticides in Soil				Method: M	E-(AU)-[ENV]AN42(
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	TP1	SE268113.001	%	60 - 130%	94
	TP2	SE268113.002	%	60 - 130%	97
	TP3	SE268113.003	%	60 - 130%	96
	TP4	SE268113.004	%	60 - 130%	94
	TP5	SE268113.005	%	60 - 130%	102
	TP6	SE268113.006	%	60 - 130%	101
d14-p-terphenyl (Surrogate)	TP1	SE268113.001	%	60 - 130%	96
	TP2	SE268113.002	%	60 - 130%	100
	TP3	SE268113.003	%	60 - 130%	97
	TP4	SE268113.004	%	60 - 130%	99
	TP5	SE268113.005	%	60 - 130%	105
	TP6	SE268113.006	%	60 - 130%	107
PAH (Polynuclear Aromatic Hydrocarbons) in Soil				Method: M	E-(AU)-[ENV]AN42(
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	TP1	SE268113.001	%	70 - 130%	94
	TP2	SE268113.002	%	70 - 130%	97
	TP3	SE268113.003	%	70 - 130%	96
	TP4	SE268113.004	%	70 - 130%	94
	TP5	SE268113.005	%	70 - 130%	102
	TP6	SE268113.006	%	70 - 130%	101
	D1	SE268113.007	%	70 - 130%	103
d14-p-terphenyl (Surrogate)	TP1	SE268113.001	%	70 - 130%	96
	TP2	SE268113.002	%	70 - 130%	100
	TP3	SE268113.003	%	70 - 130%	97
					99
	TP4	SE268113.004	%	70 - 130%	
	TP4 TP5	SE268113.004 SE268113.005	%	70 - 130% 70 - 130%	105
	TP4 TP5 TP6	SE268113.004 SE268113.005 SE268113.006	% % %	70 - 130% 70 - 130% 70 - 130%	105 107
	TP4 TP5 TP6 D1	SE268113.004 SE268113.005 SE268113.006 SE268113.007	% % %	70 - 130% 70 - 130% 70 - 130% 70 - 130%	105 107 105
d5-nitrobenzene (Surrogate)	TP4 TP5 TP6 D1 TP1	SE268113.004 SE268113.005 SE268113.006 SE268113.007 SE268113.001	% % % %	70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	105 107 105 105 102
d5-nitrobenzene (Surrogate)	TP4 TP5 TP6 D1 TP1 TP2	SE268113.004 SE268113.005 SE268113.006 SE268113.007 SE268113.001 SE268113.001 SE268113.002	% % % % %	70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	105 107 105 102 100
d5-nitrobenzene (Surrogate)	TP4 TP5 TP6 D1 TP1 TP2 TP3	SE268113.004 SE268113.005 SE268113.006 SE268113.007 SE268113.001 SE268113.002 SE268113.002	% % % % %	70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	105 107 105 102 100 103
d5-nitrobenzene (Surrogate)	TP4 TP5 TP6 D1 TP1 TP2 TP3 TP4	SE268113.004 SE268113.005 SE268113.006 SE268113.007 SE268113.001 SE268113.002 SE268113.003 SE268113.004	% % % % % %	70 - 130% 70 - 130%	105 107 105 102 100 103 97
d5-nitrobenzene (Surrogate)	TP4 TP5 TP6 D1 TP1 TP2 TP3 TP4 TP5	SE268113.004 SE268113.005 SE268113.006 SE268113.007 SE268113.001 SE268113.002 SE268113.003 SE268113.004 SE268113.005	% % % % % %	70 - 130% 70 - 130%	105 107 105 102 100 103 97 104
d5-nitrobenzene (Surrogate)	TP4 TP5 TP6 D1 TP1 TP2 TP3 TP4 TP5 TP6	SE268113.004 SE268113.005 SE268113.006 SE268113.007 SE268113.001 SE268113.002 SE268113.003 SE268113.004 SE268113.005 SE268113.005 SE268113.006	% % % % % % %	70 - 130% 70 - 130%	105 107 105 102 100 103 97 104 108
d5-nitrobenzene (Surrogate)	TP4 TP5 TP6 D1 TP1 TP2 TP3 TP4 TP5 TP6 D1	SE268113.004 SE268113.005 SE268113.006 SE268113.007 SE268113.001 SE268113.002 SE268113.003 SE268113.004 SE268113.005 SE268113.005 SE268113.006 SE268113.007	% % % % % % % %	70 - 130% 70 - 130%	105 107 105 102 100 103 97 104 108 103

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
TCMX (Surrogate)	TP1	SE268113.001	%	60 - 130%	116
	TP2	SE268113.002	%	60 - 130%	117
	TP3	SE268113.003	%	60 - 130%	113
	TP4	SE268113.004	%	60 - 130%	117
	TP5	SE268113.005	%	60 - 130%	113
	TP6	SE268113.006	%	60 - 130%	128

VOC's in Soil Method: ME-(AU					E-(AU)-[ENV]AN433
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	TP1	SE268113.001	%	60 - 130%	86
	TP2	SE268113.002	%	60 - 130%	84
	TP3	SE268113.003	%	60 - 130%	87
	TP4	SE268113.004	%	60 - 130%	84
	TP5	SE268113.005	%	60 - 130%	84
	TP6	SE268113.006	0/_	60 - 130%	76

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOC's in Soil (continued)				Method: M	IE-(AU)-[ENV]AN433
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	D1	SE268113.007	%	60 - 130%	85
	TS	SE268113.008	%	60 - 130%	75
	ТВ	SE268113.009	%	60 - 130%	84
d4-1,2-dichloroethane (Surrogate)	TP1	SE268113.001	%	60 - 130%	84
	TP2	SE268113.002	%	60 - 130%	84
	TP3	SE268113.003	%	60 - 130%	87
	TP4	SE268113.004	%	60 - 130%	86
	TP5	SE268113.005	%	60 - 130%	85
	TP6	SE268113.006	%	60 - 130%	76
	D1	SE268113.007	%	60 - 130%	87
	TS	SE268113.008	%	60 - 130%	77
	ТВ	SE268113.009	%	60 - 130%	86
d8-toluene (Surrogate)	TP1	SE268113.001	%	60 - 130%	86
	TP2	SE268113.002	%	60 - 130%	85
	TP3	SE268113.003	%	60 - 130%	89
	TP4	SE268113.004	%	60 - 130%	87
	TP5	SE268113.005	%	60 - 130%	86
	TP6	SE268113.006	%	60 - 130%	76
	D1	SE268113.007	%	60 - 130%	87
	TS	SE268113.008	%	60 - 130%	77
	ТВ	SE268113.009	%	60 - 130%	89
Volatile Petroleum Hydrocarbons in Soil				Method: M	IE-(AU)-[ENV]AN433
Volatile Petroleum Hydrocarbons in Soil Parameter	Sample Name	Sample Number	Units	Method: M Criteria	IE-(AU)-[ENV]AN433 Recoverv %
Volatile Petroleum Hydrocarbons in Soil Parameter Bromofluorobenzene (Surrogate)	Sample Name TP1	Sample Number SE268113.001	Units %	Method: M Criteria 60 - 130%	<mark>IE-(AU)-[ENV]AN433</mark> Recovery % 86
Volatile Petroleum Hydrocarbons in Soil Parameter Bromofluorobenzene (Surrogate)	Sample Name TP1 TP2	Sample Number SE268113.001 SE268113.002	Units % %	Method: M Criteria 60 - 130% 60 - 130%	IE-(AU)-[ENV]AN433 Recovery % 86 84
Volatile Petroleum Hydrocarbons in Soil Parameter Bromofluorobenzene (Surrogate)	Sample Name TP1 TP2 TP3	Sample Number SE268113.001 SE268113.002 SE268113.003	Units % %	Method: M Criteria 60 - 130% 60 - 130% 60 - 130%	IE-(AU)-[ENV]AN433 Recovery % 86 84 87
Volatile Petroleum Hydrocarbons in Soil Parameter Bromofluorobenzene (Surrogate)	Sample Name TP1 TP2 TP3 TP4	Sample Number SE268113.001 SE268113.002 SE268113.003 SE268113.004	Units % % %	Method: M Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130%	IE-(AU)-[ENV]AN433 Recovery % 86 84 84 87 84
Volatile Petroleum Hydrocarbons in Soil Parameter Bromofluorobenzene (Surrogate)	Sample Name TP1 TP2 TP3 TP4 TP5	Sample Number SE268113.001 SE268113.002 SE268113.003 SE268113.004 SE268113.005	Units % % % %	Method: M Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	IE-(AU)-[ENV]AN433 Recovery % 86 84 84 84 84 84 84
Volatile Petroleum Hydrocarbons in Soil Parameter Bromofluorobenzene (Surrogate)	Sample Name TP1 TP2 TP3 TP4 TP5 TP6	Sample Number SE268113.001 SE268113.002 SE268113.003 SE268113.004 SE268113.005 SE268113.006	Units % % % % %	Method: M Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	IE-(AU)-[ENV]AN433 Recovery % 86 84 84 84 84 84 84 76
Volatile Petroleum Hydrocarbons in Soil Parameter Bromofluorobenzene (Surrogate)	Sample Name TP1 TP2 TP3 TP4 TP5 TP6 D1	Sample Number SE268113.001 SE268113.002 SE268113.003 SE268113.004 SE268113.005 SE268113.006 SE268113.007	Units % % % % % %	Method: M Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	E-(AU)-[ENV]AN433 Recovery % 86 84 87 84 84 84 76 85
Volatile Petroleum Hydrocarbons in Soil Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate)	Sample Name TP1 TP2 TP3 TP4 TP5 TP6 D1 TP1	Sample Number SE268113.001 SE268113.002 SE268113.003 SE268113.004 SE268113.005 SE268113.006 SE268113.007 SE268113.001	Units % % % % % %	Method: M Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	E-(AU)-[ENV]AN433 Recovery % 86 84 87 84 84 84 76 85 84
Volatile Petroleum Hydrocarbons in Soil Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate)	Sample Name TP1 TP2 TP3 TP4 TP5 TP6 D1 TP1 TP2	Sample Number SE268113.001 SE268113.002 SE268113.003 SE268113.004 SE268113.005 SE268113.006 SE268113.007 SE268113.001 SE268113.002	Units % % % % % % %	Method: M Criteria 60 - 130% 60 - 130%	E-(AU)-[ENV]AN433 Recovery % 86 84 87 84 84 84 76 85 84 84 84 84 84
Volatile Petroleum Hydrocarbons in Soil Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate)	Sample Name TP1 TP2 TP3 TP4 TP5 TP6 D1 TP1 TP2 TP3	Sample Number SE268113.001 SE268113.002 SE268113.003 SE268113.004 SE268113.005 SE268113.006 SE268113.007 SE268113.001 SE268113.002 SE268113.002 SE268113.003	Units % % % % % % % %	Method: M Criteria 60 - 130% 60 - 130%	E-(AU)-[ENV]AN433 Recovery % 86 84 87 84 84 84 84 84 85 84 84 84 84 87
Volatile Petroleum Hydrocarbons in Soil Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate)	Sample Name TP1 TP2 TP3 TP4 TP5 TP6 D1 TP1 TP2 TP3	Sample Number SE268113.001 SE268113.002 SE268113.003 SE268113.004 SE268113.005 SE268113.006 SE268113.001 SE268113.001 SE268113.002 SE268113.001 SE268113.002 SE268113.003 SE268113.003 SE268113.004	Units % % % % % % % % %	Method: M Criteria 60 - 130% 60 - 130%	E-(AU)-[ENV]AN433 Recovery % 86 84 87 84 84 84 84 84 85 84 84 84 84 84 84 84 84 84 86
Volatile Petroleum Hydrocarbons in Soil Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate)	Sample Name TP1 TP2 TP3 TP4 TP5 TP6 D1 TP1 TP2 TP3 TP4 TP5 TP6 D1 TP1 TP2 TP3 TP4 TP5	Sample Number SE268113.001 SE268113.002 SE268113.003 SE268113.004 SE268113.005 SE268113.006 SE268113.007 SE268113.001 SE268113.002 SE268113.003 SE268113.004 SE268113.004 SE268113.004 SE268113.004 SE268113.004 SE268113.004 SE268113.005	Units % % % % % % % % % %	Method: M Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	E-(AU)-[ENV]AN433 Recovery % 86 84 87 84 84 84 84 85 84 84 85 84 84 85 84 85 84 85 84 85 85 85 85 85 85 85 85 85 85
Volatile Petroleum Hydrocarbons in Soil Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate)	Sample Name TP1 TP2 TP3 TP4 TP5 TP6 D1 TP1 TP2 TP3 TP4 TP5 TP6 D1 TP1 TP2 TP3 TP4 TP5 TP6	Sample Number SE268113.001 SE268113.002 SE268113.003 SE268113.004 SE268113.005 SE268113.006 SE268113.007 SE268113.001 SE268113.002 SE268113.003 SE268113.004 SE268113.002 SE268113.003 SE268113.004 SE268113.005 SE268113.006	Units % % % % % % % % % % %	Method: M Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	LE-(AU)-[ENV]AN433 Recovery % 86 84 87 84 84 84 85 84 84 84 87 86 86 85 76
Volatile Petroleum Hydrocarbons in Soil Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate)	Sample Name TP1 TP2 TP3 TP4 TP5 TP6 D1 TP1 TP2 TP3 TP4 TP5 TP6 D1 TP1 TP2 TP3 TP4 TP5 TP6 D1	Sample Number SE268113.001 SE268113.002 SE268113.003 SE268113.004 SE268113.005 SE268113.006 SE268113.007 SE268113.001 SE268113.002 SE268113.003 SE268113.004 SE268113.002 SE268113.003 SE268113.004 SE268113.005 SE268113.006 SE268113.006 SE268113.007	Units % % % % % % % % % % % %	Method: M Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	LE-(AU)-[ENV]AN433 Recovery % 86 84 87 84 84 84 85 85 84 84 87 86 86 85 76 87
Volatile Petroleum Hydrocarbons in Soil Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	Sample Name TP1 TP2 TP3 TP4 TP5 TP6 D1 TP1 TP2 TP3 TP6 D1 TP1 TP2 TP3 TP4 TP5 TP6 D1 TP4 TP5 TP6 D1 TP5 TP6 D1 TP1	Sample Number SE268113.001 SE268113.002 SE268113.003 SE268113.004 SE268113.005 SE268113.006 SE268113.007 SE268113.001 SE268113.002 SE268113.001 SE268113.002 SE268113.003 SE268113.004 SE268113.005 SE268113.005 SE268113.006 SE268113.007 SE268113.007 SE268113.007 SE268113.007	Units % % % % % % % % % % % % %	Method: M Griteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	LE-(AU)-[ENV]AN433 Recovery % 86 84 87 84 84 84 85 84 84 87 86 85 76 85 76 85 76 85 85 76 85 76 85 85 76 85 85 84 85 86 85 86 85 86 85 86 85 86 85 86 85 86 85 86 86 86 87 86 87 86 87 86 87 86 87 86 87 86 87 86 87 86 87 86 87 86 87 86 87 86 87 87 86 87 86 87 86 87 86 87 86 87 86 87 86 87 86 87 86 87 86 87 87 86 87 87 86 87 86 87 86 87 86 87 86 87 86 87 86 86 86 87 86 87 86 86 87 86 86 87 86 86 86 87 86 86 86 86 86 86 86 86 86 86
Volatile Petroleum Hydrocarbons in Soil Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	Sample Name TP1 TP2 TP3 TP4 TP5 TP6 D1 TP2 TP3 TP6 D1 TP2 TP3 TP4 TP5 TP6 D1 TP5 TP6 D1 TP1 TP5 TP6 D1 TP1 TP2	Sample Number SE268113.001 SE268113.002 SE268113.003 SE268113.004 SE268113.005 SE268113.006 SE268113.007 SE268113.001 SE268113.002 SE268113.001 SE268113.002 SE268113.003 SE268113.004 SE268113.005 SE268113.005 SE268113.006 SE268113.007 SE268113.007 SE268113.007 SE268113.007 SE268113.001 SE268113.001 SE268113.002	Units % % % % % % % % % % % %	Method: M Criteria 60 - 130%	LE-(AU)-[ENV]AN433 Recovery % 86 84 87 84 84 84 85 84 84 87 86 85 76 85 76 85 85 84 85 85 85 85 85 85 85 85 85 85
Volatile Petroleum Hydrocarbons in Soil Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	Sample Name TP1 TP2 TP3 TP4 TP5 TP6 D1 TP1 TP2 TP3 TP4 TP5 TP6 D1 TP4 TP5 TP4 TP5 TP4 TP5 TP6 D1 TP1 TP2 TP3	Sample Number SE268113.001 SE268113.002 SE268113.003 SE268113.004 SE268113.005 SE268113.006 SE268113.007 SE268113.001 SE268113.002 SE268113.003 SE268113.001 SE268113.003 SE268113.004 SE268113.004 SE268113.005 SE268113.006 SE268113.007 SE268113.001 SE268113.001 SE268113.002 SE268113.003	Units % % % % % % % % % % % % %	Method: M Criteria 60 - 130%	LE-(AU)-[ENV]AN433 Recovery % 86 84 84 84 84 84 85 84 84 87 86 85 76 85 76 85 85 85 85 85 85 85 85 85 85
Volatile Petroleum Hydrocarbons in Soil Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	Sample Name TP1 TP2 TP3 TP4 TP5 TP6 D1 TP1 TP2 TP3 TP4 TP5 TP6 D1 TP2 TP3 TP4 TP5 TP6 D1 TP1 TP2 TP3 TP4 TP5 TP6 D1 TP1 TP2 TP3 TP3 TP4	Sample Number SE268113.001 SE268113.002 SE268113.003 SE268113.004 SE268113.005 SE268113.006 SE268113.007 SE268113.001 SE268113.002 SE268113.001 SE268113.002 SE268113.003 SE268113.004 SE268113.005 SE268113.005 SE268113.006 SE268113.007 SE268113.001 SE268113.002 SE268113.003 SE268113.003 SE268113.004	Units % % % % % % % % % % % % % %	Method: M 60 - 130%	E-(AU)-[ENV]AN433 Recovery % 86 84 87 84 84 84 84 85 84 84 87 86 85 76 85 76 85 85 85 85 85 85 85 85 85 85
Volatile Petroleum Hydrocarbons in Soil Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	Sample Name TP1 TP2 TP3 TP6 D1 TP1 TP2 TP3 TP4 TP5 TP6 D1 TP1 TP2 TP3 TP4 TP5 TP6 D1 TP4 TP5 TP6 D1 TP1 TP2 TP3 TP4 TP5 TP6 D1 TP1 TP2 TP3 TP4 TP2 TP3 TP4 TP5	Sample Number SE268113.001 SE268113.002 SE268113.003 SE268113.004 SE268113.005 SE268113.006 SE268113.007 SE268113.001 SE268113.002 SE268113.003 SE268113.004 SE268113.003 SE268113.004 SE268113.005 SE268113.006 SE268113.007 SE268113.006 SE268113.007 SE268113.007 SE268113.007 SE268113.001 SE268113.002 SE268113.003 SE268113.004 SE268113.004 SE268113.005	Units % % % % % % % % % % % % % % %	Method: M Criteria 60 - 130%	IE-(AU)-[ENV]AN433 Recovery % 86 84 87 84 84 85 84 87 86 85 76 85 86 85 86 85 86 85 86 85 86 85 86 85 86 85 86 85 86 85 86 85 86 85 89 87 86
Volatile Petroleum Hydrocarbons in Soil Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	Sample Name TP1 TP2 TP3 TP6 D1 TP1 TP2 TP3 TP4 TP5 TP6 D1 TP1 TP2 TP3 TP4 TP5 TP6 D1 TP1 TP2 TP3 TP4 TP5 TP6 D1 TP1 TP2 TP3 TP4 TP2 TP3 TP4 TP5 TP4 TP5 TP6	Sample Number SE268113.001 SE268113.002 SE268113.003 SE268113.004 SE268113.005 SE268113.006 SE268113.007 SE268113.001 SE268113.002 SE268113.001 SE268113.003 SE268113.004 SE268113.003 SE268113.004 SE268113.005 SE268113.006 SE268113.007 SE268113.007 SE268113.003 SE268113.003 SE268113.004 SE268113.004 SE268113.004 SE268113.005 SE268113.005 SE268113.006	Units % % % % % % % % % % % % % % %	Method: M 60 - 130%	Recovery % 86 84 87 84 84 84 85 84 87 86 85 86 85 86 85 86 85 86 87 86 85 86 87 86 87 86 87 86 87 86 87 86 87 86 87 86 87 86 87 86 87 86 87 86 87 86 87 86 87 86 87 86 87 86

METHOD BLANKS

SE268113 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil Me			
Units	LOR	Result	
mg/kg	0.05	<0.05	
	Units mg/kg	Meth Units LOR mg/kg 0.05	

OC Pesticides in Soil

OC Pesticides in Soil				Meth	od: ME-(AU)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result
LB317675.001		Alpha BHC	mg/kg	0.1	<0.1
		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
		Beta BHC	mg/kg	0.1	<0.1
		Lindane (gamma BHC)	mg/kg	0.1	<0.1
		Delta BHC	mg/kg	0.1	<0.1
		Heptachlor	mg/kg	0.1	<0.1
		Aldrin	mg/kg	0.1	<0.1
		Isodrin	mg/kg	0.1	<0.1
		Heptachlor epoxide	mg/kg	0.1	<0.1
		Gamma Chlordane	mg/kg	0.1	<0.1
		Alpha Chlordane	mg/kg	0.1	<0.1
		Alpha Endosulfan	mg/kg	0.2	<0.1
		p,p'-DDE	mg/kg	0.1	<0.1
		Dieldrin	mg/kg	0.2	<0.1
		Endrin	mg/kg	0.2	<0.1
		Beta Endosulfan	mg/kg	0.2	<0.1
		p,p'-DDD	mg/kg	0.1	<0.1
		Endrin aldehyde	mg/kg	0.1	<0.1
		Endosulfan sulphate	mg/kg	0.1	<0.1
		p,p'-DDT	mg/kg	0.1	<0.1
		Endrin ketone	mg/kg	0.1	<0.1
		Methoxychlor	mg/kg	0.1	<0.1
		Mirex	mg/kg	0.1	<0.1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	105
OP Pesticides in Soil				Meth	od: ME-(AU)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result
LB317675.001		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
		Bromophos Ethyl	mg/kg	0.2	<0.2
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
		Diazinon (Dimpylate)	mg/kg	0.5	<0.5
		Dichlorvos	mg/kg	0.5	<0.5
		Dimethoate	mg/kg	0.5	<0.5
		Ethion	mg/kg	0.2	<0.2
		Fenitrothion	mg/kg	0.2	<0.2
		Malathion	mg/kg	0.2	<0.2
		Methidathion	mg/kg	0.5	<0.5
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
	Surrogates	2-fluorobiphenyl (Surrogate)	%	-	94
		d14-p-terphenyl (Surrogate)	%	-	98
PAH (Polynuclear Aromatic	Hydrocarbons) in Soil			Meth	od: ME-(AU)-[ENV]AN420

Sample Number	Parameter	Units	LOR	Result
LB317675.001	Naphthalene	mg/kg	0.1	<0.1
	2-methylnaphthalene	mg/kg	0.1	<0.1
	1-methylnaphthalene	mg/kg	0.1	<0.1
	Acenaphthylene	mg/kg	0.1	<0.1
	Acenaphthene	mg/kg	0.1	<0.1
	Fluorene	mg/kg	0.1	<0.1
	Phenanthrene	mg/kg	0.1	<0.1
	Anthracene	mg/kg	0.1	<0.1
	Fluoranthene	mg/kg	0.1	<0.1
	Pyrene	mg/kg	0.1	<0.1
	Benzo(a)anthracene	mg/kg	0.1	<0.1
	Chrysene	mg/kg	0.1	<0.1
	Benzo(a)pyrene	mg/kg	0.1	<0.1

METHOD BLANKS

SE268113 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Arc	omatic Hydrocarbons) in Soil (co	ntinued)		Meth	od: ME-(AU)-[ENV]AN42
Sample Number		Parameter	Units	LOR	Result
LB317675.001		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
		Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
		Benzo(ghi)perylene	mg/kg	0.1	<0.1
		Total PAH (18)	mg/kg	0.8	<0.8
	Surrogates	d5-nitrobenzene (Surrogate)	%	-	95
		2-fluorobiphenyl (Surrogate)	%	-	94
		d14-p-terphenyl (Surrogate)	%	-	98
PCBs in Soil				Meth	od: ME-(AU)-[ENV]AN42
Sample Number		Parameter	Units	LOR	Result
L B317675 001		Arachlar 1016	malka	0.2	<0.2
20011010.001		Arochlor 1221	mg/kg	0.2	<0.2
		Arochlor 1222	mg/kg	0.2	<0.2
		Arochlor 1242	mg/kg	0.2	<0.2
		Arochlor 1248	mg/kg	0.2	<0.2
		Arochlor 1254	mg/kg	0.2	<0.2
		Arochlor 1260	mg/kg	0.2	<0.2
		Arochlor 1262	mg/kg	0.2	<0.2
		Arochlor 1268	mg/kg	0.2	<0.2
		Total PCBs (Arochlors)	mg/kg	1	<0.2 <1
	Surrogates	TCMX (Surrogate)		-	102
Total Deservable El	ounogaios		70	Mathe de MIT	
Total Recoverable Ele	ements in Soll/Waste Solids/Mat			Metriod: ME	(AU)-[ENV]AN040/AN32
Sample Number		Parameter	Units	LOR	Result
LB317678.001		Arsenic, As	mg/kg	1	<1
		Cadmium, Cd	mg/kg	0.3	<0.3
		Chromium, Cr	mg/kg	0.5	<0.5
		Copper, Cu	mg/kg	0.5	<0.5
		Nickel, Ni	mg/kg	0.5	<0.5
		Lead, Pb	mg/kg	1	<1
		Zinc, Zn	mg/kg	2	<2.0
TRH (Total Recovera	ble Hydrocarbons) in Soil			Meth	od: ME-(AU)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result
LB317675.001		TRH C10-C14	mg/kg	20	<20
		TRH C15-C28	mg/kg	45	<45
		TRH C29-C36	mg/kg	45	<45
		TRH C37-C40	mg/kg	100	<100
		TRH C10-C36 Total	mg/kg	110	<110
VOC's in Soil				Meth	od: ME-(AU)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result
LB317676.001	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	ma/ka	0.1	<0.1
		Ethylbenzene	ma/ka	0.1	<0.1
		m/p-xylene	ma/ka	0.2	<0.2
		o-xylene	mg/kg	0.1	<0.1
	Polycyclic VOCs	Naphthalene (VOC)*	mg/kg	0.1	<0.1
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	100
	-	d8-toluene (Surrogate)	%	-	99
		Bromofluorobenzene (Surrogate)	%	-	100
	Totals	Total BTEX*	mg/kg	0.6	<0.6
Volatile Petroleum Hu	drocarbons in Soil			Meth	
Comple Newbor		Devenuetor			
Sample Number		Parameter TRU 00 00	Units	LOR	Result
LB31/6/6.001			mg/kg	20	<20
i	Surrogates	04-1,2-dichloroethane (Surrogate)	%	-	100

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

Mercury in Soil						Meth	od: ME-(AU)-[ENVJAN31	2
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %	l
SE267692B.053	LB317679.023	Mercury	mg/kg	0.05	<0.05	<0.05	200	0	
SE267905A.008	LB317679.014	Mercury	mg/kg	0.05	0.06	0.06	114	15	

Moisture Content

Moisture Content						Meth	od: ME-(AU)-	[ENV]AN002
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE267692B.053	LB317677.023	% Moisture	%w/w	1	7.6	8.5	42	11
SE267905A.006	LB317677.011	% Moisture	%w/w	1	17.0	17.7	36	4

OC Pesticides in Soil

OC Pesticides in Soil Method: ME-(AU)-[ENV]AN420										
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %	
SE267692B.053	LB317675.023		Alpha BHC	mg/kg	0.1	<0.1	<0.1	200	0	
			Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	200	0	
			Beta BHC	mg/kg	0.1	<0.1	<0.1	200	0	
			Lindane (gamma BHC)	mg/kg	0.1	<0.1	<0.1	200	0	
			Delta BHC	mg/kg	0.1	<0.1	<0.1	200	0	
			Heptachlor	mg/kg	0.1	<0.1	<0.1	200	0	
			Aldrin	mg/kg	0.1	<0.1	<0.1	200	0	
			Isodrin	mg/kg	0.1	<0.1	<0.1	200	0	
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	200	0	
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	200	0	
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	200	0	
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.1	200	0	
			o,p'-DDE*	mg/kg	0.1	<0.1	<0.1	200	0	
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0	
			Dieldrin	mg/kg	0.2	<0.2	<0.1	200	0	
			Endrin	mg/kg	0.2	<0.2	<0.1	200	0	
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.1	200	0	
			o,p'-DDD*	mg/kg	0.1	<0.1	<0.1	200	0	
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0	
			Endrin aldehyde	mg/kg	0.1	<0.1	<0.1	200	0	
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	200	0	
			o,p'-DDT*	mg/kg	0.1	<0.1	<0.1	200	0	
			p,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0	
			Endrin ketone	mg/kg	0.1	<0.1	<0.1	200	0	
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	200	0	
			Mirex	mg/kg	0.1	<0.1	<0.1	200	0	
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	200	0	
			Total CLP OC Pesticides	mg/kg	1	<1	<1	200	0	
			Total OC VIC EPA	mg/kg	1	<1	<1	200	0	
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.17	0.18	30	2	
SE267905A.008	LB317675.014		Alpha BHC	mg/kg	0.1	<0.1	<0.1	200	0	
			Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	200	0	
			Beta BHC	mg/kg	0.1	<0.1	<0.1	200	0	
			Lindane (gamma BHC)	mg/kg	0.1	<0.1	<0.1	200	0	
			Delta BHC	mg/kg	0.1	<0.1	<0.1	200	0	
			Heptachlor	mg/kg	0.1	<0.1	<0.1	200	0	
			Aldrin	mg/kg	0.1	<0.1	<0.1	200	0	
			Isodrin	mg/kg	0.1	<0.1	<0.1	200	0	
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	200	0	
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	200	0	
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	200	0	
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.1	200	0	
			o,p'-DDE*	mg/kg	0.1	<0.1	<0.1	200	0	
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0	
			Dieldrin	mg/kg	0.2	<0.2	<0.1	200	0	
			Endrin	mg/kg	0.2	<0.2	<0.1	200	0	
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.1	200	0	
			o,p'-DDD*	mg/kg	0.1	<0.1	<0.1	200	0	
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0	

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

OC Pesticides in So	oil (continued)						Metho	od: ME-(AU)-[ENVJAN42
Original	Duplic <u>ate</u>		Parameter	Units	L <u>OR</u>	Original	Duplicate	Criteria %	RPD %
SE267905A.008	LB317675.014		Endrin aldehyde	mg/kg	0.1	<0.1	<0.1	200	0
			Endosulfan sulphate	ma/ka	0.1	<0.1	<0.1	200	0
			o.p'-DDT*	ma/ka	0.1	<0.1	<0.1	200	0
				ma/ka	0.1	<0.1	<0.1	200	0
			Endrin kotono	mg/kg	0.1	-0.1		200	
			Mathematiles	mg/kg	0.1	<0.1	<0.1	200	
			Metroxychiol	Hig/kg	0.1	<0.1		200	
			Mirex	mg/kg	0.1	<0.1	<0.1		
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	200	0
			Total CLP OC Pesticides	mg/kg	1	<1	<1	200	0
			Total OC VIC EPA	mg/kg	1	<1	<1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.18	0.19	30	5
OP Pesticides in Sc	bil						Metho	od: ME-(AU)-[ENVJAN42
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE267692B.053	LB317675.023		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	200	0
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	200	0
			Diazinon (Dimpylate)		0.5	<0.5	<0.5	200	0
			Dichloryos	ma/ka	0.5	<0.5	<0.5	200	
			Directhooto	maka	0.5	<0.5	-0.6	200	0
				mg/kg	0.5	<0.5	<0.5	200	
				mg/kg	0.2	<0.2	<0.2		
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	200	0
			Malathion	mg/kg	0.2	<0.2	<0.2	200	0
			Methidathion	mg/kg	0.5	<0.5	<0.5	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	200	0
			Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	1
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	1
SE267905A.008	LB317675.014		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	200	0
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	ma/ka	0.2	<0.2	<0.2	200	0
				ma/ka	0.5	<0.5	<0.5	200	
			Diablograp	maka	0.5	<0.5		200	0
			Distributos	Hig/kg	0.5	<0.5	-0.5	200	
				mg/kg	0.5	<0.5	<0.5		
			Ethion	mg/kg	0.2	<0.2	<0.2	200	0
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	200	0
			Malathion	mg/kg	0.2	<0.2	<0.2	200	0
			Methidathion	mg/kg	0.5	<0.5	<0.5	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	200	0
			Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	30	7
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	4
PAH (Polynuclear A	vromatic Hydrocarbo	ons) in Soil					Methr	od: ME-(AU)-	ENVJAN42
Original	Duplicate	•	Parameter	Unite	LOR	Original	Duplicate	Criteria %	RPD %
SE267602D 052	L P217675 000		Nanthalana	Units				200	- K-D 76
SE20/092B.053	LB31/6/5.023			mg/kg	0.1	<0.1	<0.1	200	
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluorene	mg/kg	0.1	<0.1	<0.1	200	0
			Phenanthrene	mg/kg	0.1	<0.1	<0.1	200	0
			Anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Pyrene	ma/ka	0.1	<0.1	<0.1	200	0
			Benzo(a)anthracepe	ma/ka	0.1	<0.1	<0.1	200	
			Chrysene	malka	0.1	<0.1	<0.1	200	
				mg/kg	0.1	NU.1		200	
				mg/kg	0.1	<0.1	<0.1	200	
			Benzo(K)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

rhone) in Soil (contin PAH (Polynuclear A) tic Hydr

PAH (Polynuclear /	Aromatic Hydrocarbo	ons) in Soil (contin	ued)				Meth	od: ME-(AU)-	ENVJAN420
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE267692B.053	LB317675.023		Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	200	0
			Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>200</td><td>0</td></lor=0*<>	mg/kg	0.2	<0.2	<0.2	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>175</td><td>0</td></lor=lor>	mg/kg	0.2	<0.2	<0.2	175	0
			Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>mg/kg</td><td>0.3</td><td><0.3</td><td><0.3</td><td>134</td><td>0</td></lor=lor*<>	mg/kg	0.3	<0.3	<0.3	134	0
			Total PAH (18)	mg/kg	0.8	<0.8	<0.8	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	30	7
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	1
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	1
SE267905A.008	LB317675.014		Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluorene	mg/kg	0.1	<0.1	<0.1	200	0
			Phenanthrene	mg/kg	0.1	0.1	<0.1	133	8
			Anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluoranthene	mg/kg	0.1	0.3	0.2	76	39
			Pyrene	mg/kg	0.1	0.3	0.2	74	36
			Benzo(a)anthracene	mg/kg	0.1	0.1	<0.1	126	23
			Chrysene	mg/kg	0.1	0.1	<0.1	115	34
			Benzo(b&j)fluoranthene	mg/kg	0.1	0.2	0.1	98	53
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)pyrene	mg/kg	0.1	0.2	<0.1	108	46
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.1	<0.1	137	14
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(ghi)perylene	mg/kg	0.1	0.1	<0.1	119	28
			Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>mg/kg</td><td>0.2</td><td>0.2</td><td><0.2</td><td>199</td><td>6</td></lor=0*<>	mg/kg	0.2	0.2	<0.2	199	6
			Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>mg/kg</td><td>0.2</td><td>0.3</td><td><0.2</td><td>115</td><td>27</td></lor=lor>	mg/kg	0.2	0.3	<0.2	115	27
			Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>mg/kg</td><td>0.3</td><td>0.3</td><td><0.3</td><td>118</td><td>4</td></lor=lor*<>	mg/kg	0.3	0.3	<0.3	118	4
			Total PAH (18)	mg/kg	0.8	1.6	<0.8	40	125 ©
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	30	8
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	30	7
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	4
PCBs in Soil							Meth	od: ME-(AU)-I	ENVIAN420

Original Duplicate Criteria % RPD % Units LOR Original Duplicate Parameter SE267692B.053 LB317675.023 Arochlor 1016 0.2 <0.2 <0.2 200 0 mg/kg Arochlor 1221 0.2 <0.2 <0.2 200 0 mg/kg 200 0 Arochlor 1232 mg/kg 0.2 < 0.2 < 0.2 Arochlor 1242 0.2 <0.2 <0.2 200 0 mg/kg Arochlor 1248 0.2 <0.2 <0.2 200 0 mg/kg Arochlor 1254 0.2 < 0.2 < 0.2 200 0 mg/kg Arochlor 1260 0.2 <0.2 <0.2 200 0 mg/kg Arochlor 1262 0.2 <0.2 <0.2 200 0 mg/kg Arochlor 1268 mg/kg 0.2 <0.2 < 0.2 200 0 Total PCBs (Arochlors) mg/kg 1 <1 <1 200 0 TCMX (Surrogate) 30 Surrogates 0 0 2 mg/kg LB317675.014 SE267905A.008 Arochlor 1016 mg/kg 0.2 < 0.2 < 0.2 200 0 Arochlor 1221 0.2 <0.2 <0.2 200 0 mg/kg 0.2 <0.2 <0.2 200 Arochlor 1232 0 mg/kg Arochlor 1242 mg/kg 0.2 <0.2 < 0.2 200 0 Arochlor 1248 0.2 <0.2 <0.2 200 0 mg/kg Arochlor 1254 0.2 <0.2 <0.2 200 0 mg/kg 200 Arochlor 1260 mg/kg 0.2 < 0.2 < 0.2 0 Arochlor 1262 0.2 <0.2 <0.2 200 0 mg/kg Arochlor 1268 0.2 <0.2 <0.2 200 0 mg/kg Total PCBs (Arochlors) 200 0 mg/kg 1 <1 <1 Surrogates TCMX (Surrogate) 0 0 30 5 mg/kg Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: ME-(AU)-[ENV]AN040/AN320

Original Duplicate Units LOR Parameter

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

<u></u>					1.000				
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE267692B.053	LB317678.023		Arsenic, As	mg/kg	1	<1	<1	154	0
			Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
			Chromium, Cr	mg/kg	0.5	7.2	5.1	38	35
			Copper, Cu	mg/kg	0.5	48	44	31	8
			Nickel, Ni	mg/kg	0.5	75	66	31	13
			Lead, Pb	mg/kg	1	2	2	77	22
			Zinc, Zn	mg/kg	2	34	30	36	14
TRH (Total Recove	arable Hydrocarbons) i	in Soil					Meth	od: ME_(ALI)-	
	siable rigarecarbene) i				1.00				
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE267692B.053	LB317675.023		TRH C10-C14	mg/kg	20	<20	<20	200	0
			TRH C15-C28	mg/kg	45	<45	<45	200	0
			TRH C29-C36	mg/kg	45	<45	<45	200	0
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
			TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	<25	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
SE267905A.008	LB317675.014		TBH C10-C14	ma/ka	20	<20	<20	200	0
			TBH C15-C28	ma/ka	45	<45	<45	200	0
			TBH C29-C36	mg/kg	45	<45	47	130	5
			TPH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10 C26 Total	mg/kg	110	<110	<100	200	0
			TRH C10-C36 Total	Hig/kg	110	<110	<110	200	0
			TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	200	0
		IRH F Bands	IRH >C10-C16	mg/kg	25	<25	<25	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
VOC's in Soil							Meth	od: ME-(AU)-	[ENV]AN43
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE267692B 053	L B317676 022	Monocyclic	Benzene	ma/ka	0.1	<0.1	<0.1	200	0
022070020.000	20011010.022	Aromatic		ma/ka	0.1	<0.1	<0.1	200	0
		, a official	Ethylhograph	mg/kg	0.1	<0.1	<0.1	200	0
				mg/kg	0.1	<0.1	<0.1	200	0
				mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	9.3	10.8	50	15
			d8-toluene (Surrogate)	mg/kg	-	9.2	9.8	50	6
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.4	7.3	50	15
		Totals	Total BTEX*	mg/kg	0.6	<0.6	<0.6	200	0
			Total Xylenes*	mg/kg	0.3	<0.3	<0.3	200	0
SE268113.003	LB317676.014	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	d4-1.2-dichloroethane (Surrogate)	ma/ka	_	8.7	7.4	50	16
			d8-toluene (Surrogate)	ma/ka	_	8.9	7.6	50	16
			Bromofluorobenzene (Surrogate)	mg/kg	_	8.7	7.4	50	16
		Totolo		mg/kg	0.6	<0.6	-0.6	200	0
		Totais		mg/kg	0.0	<0.0	<0.0	200	0
			Total Aylenes	Tig/kg	0.3	<0.5	<0.5	200	0
Volatile Petroleum	Hydrocarbons in Soil						Meth	od: ME-(AU)-	[ENV]AN43
Original	Duplicate		Parameter	Units	L <u>OR</u>	Ori <u>ginal</u>	Dup <u>licat</u> e	Crite <u>ria %</u>	RP <u>D %</u>
SE267692B.053	LB317676.022		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	ma/ka	20	<20	<20	200	0
		Surrogates	d4-1.2-dichloroethane (Surrogate)	ma/ka	_	9.3	10.8	50	15
			d8-toluene (Surrogate)	ma/ka		9.2	9.8	50	6
						0.2	0.0		<u> </u>

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

Valatila Detralaum Hudraasshans in Sail (confir

Volatile Petroleum Hydrocarbons in Soli (continued)						Method: ME-(AU)-[ENV]AN43				
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %	
SE267692B.053	LB317676.022	Surrogates	Bromofluorobenzene (Surrogate)	mg/kg	-	8.4	7.3	50	15	
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0	
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0	
SE268113.003	LB317676.014		TRH C6-C10	mg/kg	25	<25	<25	200	0	
			TRH C6-C9	mg/kg	20	<20	<20	200	0	
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	8.7	7.4	50	16	
			d8-toluene (Surrogate)	mg/kg	-	8.9	7.6	50	16	
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.7	7.4	50	16	
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0	
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0	

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil					I	Nethod: ME-(A	U)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB317679.002	Mercury	mg/kg	0.05	0.19	0.2	80 - 120	96

OC Pesticides in S	oil					I	lethod: ME-(A	U)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB317675.002		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	97
		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	97
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	97
		Dieldrin	mg/kg	0.2	0.2	0.2	60 - 140	114
		Endrin	mg/kg	0.2	0.2	0.2	60 - 140	87
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	99
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.16	0.15	40 - 130	108
OP Pesticides in S	oil					N	lethod: ME-(A	U)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB317675.002		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.9	2	60 - 140	94
		Diazinon (Dimpylate)	mg/kg	0.5	1.9	2	60 - 140	93
		Dichlorvos	mg/kg	0.5	1.3	2	60 - 140	63
		Ethion	mg/kg	0.2	1.8	2	60 - 140	88
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	94
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	97
PAH (Polynuclear	Aromatic Hydroca	arbons) in Soil				I	Nethod: ME-(A	U)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB317675.002		Naphthalene	mg/kg	0.1	4.1	4	60 - 140	102
		Acenaphthylene	mg/kg	0.1	4.2	4	60 - 140	104
		Acenaphthene	mg/kg	0.1	4.0	4	60 - 140	100
		Phenanthrene	mg/kg	0.1	4.3	4	60 - 140	107
		Anthracene	mg/kg	0.1	4.4	4	60 - 140	110
		Fluoranthene	mg/kg	0.1	4.1	4	60 - 140	103
		Pyrene	mg/kg	0.1	4.5	4	60 - 140	112
		Benzo(a)pyrene	mg/kg	0.1	4.7	4	60 - 140	117
	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	89
		2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	94

	d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	97
PCBs in Soil					1	dethod: ME-(A	U)-[ENV]AN420
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB317675.002	Arochlor 1260	mg/kg	0.2	0.4	0.4	60 - 140	109

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Total Recoverable E	Elements in Soil/W	aste Solids/Materials by ICPOES				Method:	ME-(AU)-[EN	vjan040/an320				
Sample Number		Parameter		Units	LOR	Result	Expected	Criteria %	Recovery %			
LB317678.002		Arsenic, As		mg/kg	1	340	318.22	80 - 120	107			
		Cadmium, Cd		mg/kg	0.3	5.3	4.81	70 - 130	111			
		Chromium, Cr		mg/kg	0.5	37	38.31	80 - 120	97			
		Copper, Cu		mg/kg	0.5	300	290	80 - 120	104			
		Nickel, Ni		mg/kg	0.5	190	187	80 - 120	99			
		Lead, Pb		mg/kg	1	92	89.9	80 - 120	103			
		Zinc, Zn		mg/kg	2	270	273	80 - 120	100			
TRH (Total Recover	rable Hydrocarboi	ns) in Soll					N	lethod: ME-(A	U)-[ENV]AN403			
Sample Number		Parameter		Units	LOR	Result	Expected	Criteria %	Recovery %			
LB317675.002		TRH C10-C14		mg/kg	20	51	40	60 - 140	129			
		TRH C15-C28		mg/kg	45	49	40	60 - 140	122			
		TRH C29-C36		mg/kg	45	<45	40	60 - 140	91			
	TRH F Bands	TRH >C10-C16		mg/kg	25	51	40	60 - 140	129			
		TRH >C16-C34 (F3)		mg/kg	90	<90	40	60 - 140	107			
		TRH >C34-C40 (F4)		mg/kg	120	<120	20	60 - 140	90			
VOC's in Soil					C's in Soil Method: ME-(AU)-[ENV]AN433							

Sample Number

20/7/2024

VPH F Bands

TRH C6-C10 minus BTEX (F1)

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOC's in Soil (continued) Method: ME-(AU)-[ENV]AN433 Sample Number LOR Result Expected Criteria % Recovery % Parameter Units LB317676.002 60 - 140 Monocyclic 0.1 Benzene mg/kg 4.0 5 80 Aromatic Toluene mg/kg 0.1 4.1 5 60 - 140 82 Ethylbenzene 0.1 4.1 5 60 - 140 81 mg/kg m/p-xylene mg/kg 0.2 8.2 10 60 - 140 82 o-xylene mg/kg 0.1 4.1 5 60 - 140 82 Surrogates d4-1,2-dichloroethane (Surrogate) mg/kg 9.1 10 70 - 130 91 70 - 130 9.4 94 d8-toluene (Surrogate) 10 mg/kg Bromofluorobenzene (Surrogate) mg/kg 9.0 10 70 - 130 90 Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433 Sample Number Parameter Units LOR Result Expected Criteria % Recovery % LB317676.002 TRH C6-C10 mg/kg 25 68 92.5 60 - 140 73 TRH C6-C9 mg/kg 20 60 80 60 - 140 75 d4-1,2-dichloroethane (Surrogate) 70 - 130 91 Surrogates 9.1 10 mg/kg -Bromofluorobenzene (Surrogate) 9.0 10 70 - 130 90 mg/kg

mg/kg

25

43

62.5

60 - 140

69

Method: ME-(AU)-[ENV]AN420

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil						Met	nod: ME-(AU	J)-[ENV]AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE268094.001	LB317679.004	Mercury	mg/kg	0.05	0.18	<0.05	0.2	87

OC Pesticides in Soil

QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE268094.005	LB317675.025		Alpha BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	-	-
			Beta BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Lindane (gamma BHC)	mg/kg	0.1	<0.1	<0.1	-	-
			Delta BHC	mg/kg	0.1	0.2	<0.1	0.2	116
			Heptachlor	mg/kg	0.1	0.2	<0.1	0.2	116
			Aldrin	mg/kg	0.1	0.2	<0.1	0.2	115
			Isodrin	mg/kg	0.1	<0.1	<0.1	-	-
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	-	-
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha Endosulfan	mg/kg	0.2	<0.1	<0.2	-	-
			o,p'-DDE*	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	-
			Dieldrin	mg/kg	0.2	0.2	<0.2	0.2	106
			Endrin	mg/kg	0.2	0.2	<0.2	0.2	103
			Beta Endosulfan	mg/kg	0.2	<0.1	<0.2	-	-
			o,p'-DDD*	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	-
			Endrin aldehyde	mg/kg	0.1	<0.1	<0.1	-	-
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	-	-
			o,p'-DDT*	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDT	mg/kg	0.1	0.2	<0.1	0.2	109
			Endrin ketone	mg/kg	0.1	<0.1	<0.1	-	-
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	-	-
			Mirex	mg/kg	0.1	<0.1	<0.1	-	-
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	-	-
			Total CLP OC Pesticides	mg/kg	1	1	<1	-	-
			Total OC VIC EPA	mg/kg	1	1	<1	-	-
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.18	0.19	-	121
OP Pesticides in	Soil						Meth	nod: ME-(AL	J)-[ENV]AN420
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE268094 005	LB317675.025		Azinphos-methyl (Guthion)	ma/ka	0.2	21	<0.2	-	-

QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE268094.005	LB317675.025		Azinphos-methyl (Guthion)	mg/kg	0.2	2.1	<0.2	-	-
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	-	-
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	2.0	<0.2	2	97
			Diazinon (Dimpylate)	mg/kg	0.5	2.0	<0.5	2	97
			Dichlorvos	mg/kg	0.5	1.4	<0.5	2	70
			Dimethoate	mg/kg	0.5	<0.5	<0.5	-	-
			Ethion	mg/kg	0.2	2.0	<0.2	2	101
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	-	-
			Malathion	mg/kg	0.2	<0.2	<0.2	-	-
			Methidathion	mg/kg	0.5	<0.5	<0.5	-	-
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	-	-
			Total OP Pesticides*	mg/kg	1.7	9.4	<1.7	-	-
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	-	93
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	-	100
PAH (Polynuclea	r Aromatic Hydrocarb	ons) in Soil					Meth	od: ME-(Al	J)-[ENV]AN420
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE268094.005	LB317675.025		Naphthalene	mg/kg	0.1	4.1	<0.1	4	103
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
			Acenaphthylene	mg/kg	0.1	4.3	<0.1	4	107
			Acenaphthene	mg/kg	0.1	4.1	<0.1	4	101
			Fluorene	mg/kg	0.1	<0.1	<0.1	-	-

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclea	ar Aromatic Hydroca	rbons) in Soil (cor	itinued)				Met	hod: ME-(A	U)-[ENV]AN420
QC Sample	Sample Numbe	r	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE268094.005	LB317675.025		Phenanthrene	mg/kg	0.1	4.2	<0.1	4	106
			Anthracene	mg/kg	0.1	4.4	<0.1	4	111
			Fluoranthene	mg/kg	0.1	4.1	<0.1	4	104
			Pyrene	mg/kg	0.1	4.4	<0.1	4	111
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
			Chrysene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(a)pyrene	mg/kg	0.1	4.8	<0.1	4	120
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1		-
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	-	-
			Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.8</td><td><0.2</td><td>-</td><td>-</td></lor=0*<>	TEQ (mg/kg)	0.2	4.8	<0.2	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.9</td><td><0.2</td><td>-</td><td>-</td></lor=lor>	TEQ (mg/kg)	0.2	4.9	<0.2	-	-
			Carcinogenic PAHs. BaP TEQ <lor=lor*< td=""><td>TEQ (ma/ka)</td><td>0.3</td><td>4.9</td><td><0.3</td><td>-</td><td>-</td></lor=lor*<>	TEQ (ma/ka)	0.3	4.9	<0.3	-	-
			Total PAH (18)	mg/kg	0.8	34	<0.8	-	-
		Surrogates	d5-nitrobenzene (Surrogate)	ma/ka	-	0.5	0.5	-	96
			2-fluorobiphenvl (Surrogate)	ma/ka	_	0.5	0.5	-	93
			d14-p-terphenyl (Surrogate)	ma/ka		0.5	0.5	-	100
PCBs in Soli							Met	noa: ME-(A	U)-[ENV]AN420
QC Sample	Sample Numbe	r	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE268094.005	LB317675.025		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1232	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1242	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1248	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1254	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1260	mg/kg	0.2	0.5	<0.2	0.4	118
			Arochlor 1262	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1268	mg/kg	0.2	<0.2	<0.2	-	-
			Total PCBs (Arochlors)	mg/kg	1	<1	<1	-	-
		Surrogates	TCMX (Surrogate)	mg/kg	-	0	0	-	119
Total Recoverab	le Elements in Soil/	Naste Solids/Mate	rials by ICPOES				Method: Mi	E-(AU)-[EN\	/JAN040/AN320
QC Sample	Sample Numbe	r	Parameter	Units	LOR	Result	Original	Spike	Recoverv%
SE268094.001	LB317678.004		Arsenic, As	ma/ka	1	48	2	50	92
			Cadmium. Cd	ma/ka	0.3	42	<0.3	50	83
			Chromium Cr	ma/ka	0.5	52	10	50	84
			Copper Gu	mg/kg	0.5	50	33	50	94
			Nickel Ni	mg/kg	0.5	50	4.6	50	90
			Lead Ph	ma/ka	1	49	4	50	89
			Zinc Zn	mg/kg	2	65	20	50	92
				ingrig	2		20		
TRH (Total Reco	verable Hydrocarbo	ons) in Soli					Met	nod: ME-(A	U)-[ENV]AN403
QC Sample	Sample Numbe	r	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE268094.005	LB317675.025		TRH C10-C14	mg/kg	20	48	<20	40	115
			TRH C15-C28	mg/kg	45	47	<45	40	113
			TRH C29-C36	mg/kg	45	<45	<45	40	102
			TRH C37-C40	mg/kg	100	<100	<100	-	-
			TRH C10-C36 Total	mg/kg	110	<110	<110	-	-
			TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	-	-
		TRH F	TRH >C10-C16	mg/kg	25	49	<25	40	116
		Bands	TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	49	<25	-	-
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	40	112
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	-	-
VOC's in Soil							Met	hod: ME-(A	U)-[ENV]AN433
OC Sample	Sample Numbe	r	Parameter	Unite		Result	Original	Spike	Recovery
SE268004 004	L B317676 004	Monopuelie	Benzene					Б	- Kecovery /a
02200034.001	20011010.004	Aromatic		mg/kg	0.1	J.3 / 1	-0.1	5	01
		, a omatio	Ethylhenzene	mg/kg	0.1	4.0	-0.1	5	01
				mg/kg	0.1	4.0	<0.0	5	01
L			пир-хутепе	mg/kg	U.2	0.3	SU.2	10	82

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

	ntinued)						Moth	od: ME (AL	
	nunuea)						Meu)-[ENV]AN433
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE268094.001	LB317676.004	Monocyclic	o-xylene	mg/kg	0.1	4.2	<0.1	5	83
		Polycyclic	Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	-	-
	Surrogates		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	7.3	8.6	10	73
			d8-toluene (Surrogate)	mg/kg	-	7.3	8.8	10	73
			Bromofluorobenzene (Surrogate)	mg/kg	-	7.1	9.0	10	71
		Totals	Total BTEX*	mg/kg	0.6	24	<0.6	-	-
			Total Xylenes*	mg/kg	0.3	12	<0.3	-	-
Volatile Petroleur	m Hydrocarbons in So	lic					Meth	nod: ME-(AL)-[ENV]AN433
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE268094.001	LB317676.004		TRH C6-C10	mg/kg	25	69	<25	92.5	69
			TRH C6-C9	mg/kg	20	61	<20	80	71
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	7.3	8.6	10	73
			d8-toluene (Surrogate)	mg/kg	-	7.3	8.8	10	73
			Bromofluorobenzene (Surrogate)	mg/kg	-	7.1	9.0	-	71
		VPH F	Benzene (F0)	mg/kg	0.1	3.9	<0.1	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	44	<25	62.5	63

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the

No matrix spike duplicates were required for this job.

id samples expressed on a dry weight basis.

criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found he s://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- *** Indicates that both * and ** apply.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- 2 RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- ¹ LOR was raised due to dilution of significantly high concentration of analyte in sample.
- ® Reanalysis of sample in duplicate confirmed sample heterogeneity and inconsistency of results.
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

ANALYTICAL REPORT

- CLIENT DETAILS		LABORATORY DETAIL	.5
Contact	Admin	Manager	Shane McDermott
Client	NEO CONSULTING PTY LTD	Laboratory	SGS Alexandria Environmental
Address	PO BOX 279 RIVERSTONE NSW 2765	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	0416 680 375	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	admin@neoconsulting.com.au	Email	au.environmental.sydney@sgs.com
Project	N09489	SGS Reference	SE268113 R0
Order Number	N09489	Date Received	12 Jul 2024
Samples	6	Date Reported	20 Jul 2024

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

Sample #1,2,4,6: A portion of the sample supplied has been sub-sampled for asbestos analysis in soil according to SGS In-house procedures. We therefore cannot guarantee that the sub-sample is representative of the entire sample supplied. SGS Industries and Environment recommends supplying approximately 50-100g of sample in a separate container.

Sample #3: Asbestos found in approx 25x15x4mm cement sheet fragments x2 and found in approx 12x4x3mm cement sheet fragments x3.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin

SIGNATORIES -

C

Yusuf KUTHPUDIN Asbestos Analyst

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia

www.sgs.com.au f +61 2 8594 0499

Member of the SGS Group

ANALYTICAL REPORT

RESULTS _							
Fibre Identifica	tion in soil					Method AN602	
Laboratory Reference	Client Reference	Matrix	Sample Description	Date Sampled	Date Analysed	Fibre Identification	Est.%w/w*
SE268113.001	TP1	Soil	133g Clay, Sand, Soil, Rocks	12 Jul 2024	19 Jul 2024	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01
SE268113.002	TP2	Soil	107g Clay, Sand, Soil, Rocks	12 Jul 2024	19 Jul 2024	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01
SE268113.003	TP3	Soil	627g Clay, Sand, Soil, Rocks	12 Jul 2024	18 Jul 2024	Chrysotile & Crocidolite Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	>0.01
SE268113.004	TP4	Soil	166g Clay, Sand, Rocks	12 Jul 2024	19 Jul 2024	No Asbestos Found at RL of 0.1g/kg	<0.01
SE268113.005	TP5	Soil	650g Sand, Soil, Rocks	12 Jul 2024	18 Jul 2024	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01
SE268113.006	TP6	Soil	89g Sand, Soil, Rocks	12 Jul 2024	19 Jul 2024	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01

ANALYTICAL REPORT

Gravimetric Determination of Asbestos in Soil [AN605] Tested: 17/7/2024

			TP3	TP5
			SOIL	SOIL
			-	-
	ЦОМ		12/7/2024 SE268113.003	12/7/2024 SE268113.005
	001	LOIN	32200113.003	32200113.003
Date Analysed*	No unit	-	18/07/2024 00:00	18/07/2024 00:00
Total Sample Weight*	g	1	627	650
Bonded ACM in >7mm Sample*	g	0.001	1.24	<0.001
AF/FA in >2mm to <7mm Sample*	g	0.00001	0.172	<0.00001
AF/FA in <2mm Sample*	g	0.00001	<0.00001	<0.00001
Asbestos in soil (>7mm ACM)*	%w/w	0.01	0.03	<0.01
Asbestos in soil (>2mm to <7mm AF/FA)*	%w/w	0.001	0.027	<0.001
Asbestos in soil (<2mm AF/FA)*	%w/w	0.001	<0.001	<0.001
Asbestos in soil (<7mm AF/FA)*	%w/w	0.001	0.027	<0.001
Fibre Type*	No unit	-	Chrysotile, Crocidolite	NAD

METHOD SUMMARY

METHOD	
	METHODOLOGY SUMMARY
AN602/AS4964	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602/AS4964	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602/AS4964	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection/reporting limit (RL) of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602/AS4964	The sample can be reported "no asbestos found at the reporting limit (RL) of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable ' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.
AN605	This technique gravimetrically determines the mass of Bonded Asbestos Containing Material retained on a 7mm Sieve and assumes that 15% of this ACM is asbestos. This calculated asbestos weight is then calculated as a percentage of the total sample weight. Any fibrous asbestos (FA) found in this fraction will be added to the 2-7mm fraction and its mass recorded there.
AN605	This technique also gravimetrically determines the mass of Fibrous Asbestos (FA) and Asbestos Fines (AF) Containing Material retained on and passing a 2mm sieve post 7mm sieving. Assumes that FA and AF are 100% asbestos containing. This calculated asbestos weight is then calculated as a percentage of the total sample weight. This does not include free/respirable fibres which are only observed by standard trace analysis as per AN602.
AN605	Bonded asbestos containing material (Bonded ACM) comprises asbestos-containing-material which is sound in condition. Fibrous asbestos (FA) comprises friable asbestos material and includes severely weathered cement sheet, insulation products and woven asbestos material. Asbestos fines (AF) includes free fibres, small fibre bundles and also small fragments of bonded ACM that passes through a 7mm sieve - which implies that the bonded ACM fragments have a substantial degree of damage which increases the potential for fibre release.
AN-605	Insofar as is technically feasible, this report is consistent with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment Remediation and Management of Asbestos - Contaminated Sites in Western Australia - May 2009 and NEPM 1999 (2013) schedule B1 section 4

FOOTNOTES

Amosite Chrysotile	-	Brown Asbestos White Asbestos	NA I NR	-	Not Analysed Listed Not Required
Crocidolite	-	Blue Asbestos	*	-	NATA accreditation does not cover the performance of this service.
Amphiboles	-	Amosite and/or Crocidolite	**	-	Indicative data, theoretical holding time exceeded.
			***	-	Indicates that both * and ** apply.

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received.

Where reported: 'Asbestos Detected': Asbestos detected by polarised light microscopy, including dispersion staining. Where reported: 'No Asbestos Found': No Asbestos Found by polarised light microscopy, including dispersion staining. Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarised light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

	000					CHAIN	I OF	CUSI	TODY	& A	NALY	SIS F	REQU	EST				Page	1 of1	
	SIS		Company Name: Neo Consulting Pty Ltd					Proj	ject Nan	ne/No:	N09489									
		- Tur	186 Riverstone				e Parad	Parade			Purchase Order No:		QUOTE NUMER: 322722v6							
Unit 1	6, 33 Maddox Street	yuncy		Add	ress:	Riverst	verstone NSW 2765				Results Required Date: Telephone:		Next Day/3 days/Standard 0416680375 Fax:							
Teleph	none No: (02) 85940400														Fax:					
Email: a	u.samplereceipt.sydney@sgs.c	om	Con	tact Na	ame:	Nick Ca					Ema	Email Deputte and		nick@neoconsulting, admin@neoconsulting, oskar@			ng, oskar@neoconsultin	ıg,		
Lab IL	Number:(please quote on	correspondence)	Que	otatior	No:					invoices to :		sarah@neoconsulting, ehsan@neoconsulting, Isabella@neoconsulting				ulting				
				Matri	x						ANA	YSIS REQUESTED					Add	litional Report Format	s	
			ар	propria	ate)	ERS													EPM SV	
		1	ample	Sample	Cartridge	F CONTAINE		itos ID	tos NEPM										SDAT QO O, Guidelines	
SGS ID	Client Sample ID	Sampling Date/ Time	Soil Sa	Water	Other	NO. O	REST	Asbes	Asbes	CIDN	втех							No	otes/Guidelines/LOR/ Special instructions	
1	TP1	12/07/2024	X			1	X	X												
2	TP2	12/07/2024	X			1	X	X												
3	TP3	12/07/2024	X			2	X		X								1	1		
4	TP4	12/07/2024	X			1	X	X								S	GS FH	IS Sydne	V COC	
5	TP5	12/07/2024	X			2	Х		X								SE2	6811	3	
G	TP6	12/07/2024	X			1	X	X											•	
7	D1	12/07/2024	X			1				X										
8	TS	12/07/2024	X			1					X									
9	ТВ	12/07/2024	X			1	· ·				X									
Relinqu	uished By: Jacob king		Date/1	l Fime:	12/07	//2024 Received By:				Bu	Date/Time: 12 07 21 @ 2.10			2 2.10						
Relinqu	uished By:		Date/1	Time:				Rece	ived By	1:	1	1		,	Date/Time:					
Sample	es Intact: Wes No		Tempe	eratur	e: 7	·5 °C	;	Samp	ole Sec	urity Se	ealed:	Yes /	No		Hazards: e.g. may contain Asbestos					
Comments / Subcontracting details:																				

SAMPLE RECEIPT ADVICE

Contact	Admin	Manager	Shane McDermott
Client	NEO CONSULTING PTY LTD	Laboratory	SGS Alexandria Environmental
Address	PO BOX 279 RIVERSTONE NSW 2765	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	0416 680 375	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	admin@neoconsulting.com.au	Email	au.environmental.sydney@sgs.com
Project	N09489	Samples Received	Fri 12/7/2024
Order Number	N09489	Report Due	Fri 19/7/2024
Samples	9	SGS Reference	SE268113

s were receive d on ⊢rida ected to be re 2///2 re expe SGS reference SE268113 when making enquiries. Refer below for details relating to sample integrity upon receipt.

Sample counts by matrix	9 Soil	Type of documentation received	COC
Date documentation received	12/7/2024	Samples received in good order	Yes
Samples received without headspace	Yes	Sample temperature upon receipt	7.5°C
Sample container provider	SGS	Turnaround time requested	Standard
Samples received in correct containers	Yes	Sufficient sample for analysis	Yes
Sample cooling method	Ice Bricks	Samples clearly labelled	Yes
Complete documentation received	Yes		

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499 www.sgs.com.au

SAMPLE RECEIPT ADVICE

CLIENT DETAILS

Client NEO CONSULTING PTY LTD

Project N09489

SUMMARY	OF ANALYSIS			1					
No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Recoverable Elements in Soil/Waste	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
001	TP1	30	14	26	11	7	10	11	7
002	TP2	30	14	26	11	7	10	11	7
003	ТРЗ	30	14	26	11	7	10	11	7
004	TP4	30	14	26	11	7	10	11	7
005	TP5	30	14	26	11	7	10	11	7
006	TP6	30	14	26	11	7	10	11	7
007	D1	-	-	26	-	7	10	11	7
008	TS	-	-	-	-	-	-	11	-
009	ТВ	-	-	-	-	-	-	11	-

CONTINUED OVERLEAF

SAMPLE RECEIPT ADVICE

CLIENT DETAILS

- SUMMARY OF ANALYSIS

Client NEO CONSULTING PTY LTD

Project N09489

No.	Sample ID	Fibre Identification in soil	Gravimetric Determination of Asbestos in Soil	Mercury in Soil	Moisture Content
001	TP1	3	-	1	1
002	TP2	3	-	1	1
003	ТРЗ	3	10	1	1
004	TP4	3	-	1	1
005	TP5	3	10	1	1
006	TP6	3	-	1	1
007	D1	-	-	1	1
009	ТВ	-	-	-	1

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

APPENDIX D

Property Report and Relevant Information

NED CONSULTING

Property Report

45 ORTH STREET KINGSWOOD 2747

Property Details

Address:	45 ORTH STREET KINGSWOOD 2747
Lot/Section /Plan No:	186/-/DP14333
Council:	PENRITH CITY COUNCIL

Summary of planning controls

Planning controls held within the Planning Database are summarised below. The property may be affected by additional planning controls not outlined in this report. Please contact your council for more information.

Local Environmental Plans	Penrith Local Environmental Plan 2010 (pub. 21-7-2023)
Land Zoning	MU1 - Mixed Use: (pub. 24-2-2023)
Height Of Building	18 m
Floor Space Ratio	3.5:1
Minimum Lot Size	400 m²
Heritage	NA
Land Reservation Acquisition	NA
Foreshore Building Line	NA
Active Street Frontages	Active Street Frontage
Local Provisions	13 km
	30 km
	Clauses of LEP apply
Obstacle Limitation Surface	230.5-230.5

Detailed planning information

State Environmental Planning Policies which apply to this property

State Environmental Planning Policies can specify planning controls for certain areas and/or types of development. They can also identify the development assessment system that applies and the type of environmental assessment that is required.

This report provides general information only and does not replace a Section 10.7 Certificate (formerly Section 149)

Property Report

45 ORTH STREET KINGSWOOD 2747

- State Environmental Planning Policy (Biodiversity and Conservation) 2021: Excluded (pub. 21 -10-2022)
- State Environmental Planning Policy (Biodiversity and Conservation) 2021: Hawkesbury Nepean Catchment (pub. 21-10-2022)
- State Environmental Planning Policy (Biodiversity and Conservation) 2021: Hawkesbury-Nepean Sub-Catchments (pub. 21-10-2022)
- State Environmental Planning Policy (Biodiversity and Conservation) 2021: Land Application (pub. 2-12-2021)
- State Environmental Planning Policy (Biodiversity and Conservation) 2021: Strategic Conservation Planning Area (pub. 9-12-2022)
- State Environmental Planning Policy (Biodiversity and Conservation) 2021: Subject Land (pub. 2-12-2021)
- State Environmental Planning Policy (Exempt and Complying Development Codes) 2008: Land Application (pub. 12-12-2008)
- State Environmental Planning Policy (Housing) 2021: Land Application (pub. 26-11-2021)
- State Environmental Planning Policy (Industry and Employment) 2021: Land Application (pub. 2-12-2021)
- State Environmental Planning Policy (Planning Systems) 2021: Land Application (pub. 2-12-2021)
- State Environmental Planning Policy (Primary Production) 2021: Land Application (pub. 2-12-2021)
- State Environmental Planning Policy (Resilience and Hazards) 2021: Land Application (pub. 2 -12-2021)
- State Environmental Planning Policy (Resources and Energy) 2021: Land Application (pub. 2-12-2021)
- State Environmental Planning Policy (Sustainable Buildings) 2022: Land Application (pub. 29-8-2022)
- State Environmental Planning Policy (Transport and Infrastructure) 2021: Land Application (pub. 2-12-2021)

This report provides general information only and does not replace a Section 10.7 Certificate (formerly Section 149)

Property Report 45 ORTH STREET KINGSWOOD 2747

Other matters affecting the property

Information held in the Planning Database about other matters affecting the property appears below. The property may also be affected by additional planning controls not outlined in this report. Please speak to your council for more information

Greater Sydney Tree Canopy Cover 2019 Percentage	28.93
Greater Sydney Tree Canopy Cover 2022 Percentage	25.94
Housing and Productivity Contribution	Greater Sydney - Base HPC
Local Aboriginal Land Council	DEERUBBIN
Regional Plan Boundary	Greater Sydney

This report provides general information only and does not replace a Section 10.7 Certificate (formerly Section 149)

MEDICAL CONSULTING ROOMS, KINGSWOOD NSW

HIS DRAWING IS OWNED BY AND REMAINS THE PROPERTY OF BELL ARCHITECTURE. ALL	ł		1			
IGHTS RESERVED © REPRODUCTION OR USE OF THIS DRAWING WITHOUT THE PERMISSION IF THE ARCHITECT IS ILLEGAL. THE CLIENT IS LICENSED TO USE THIS DRAWING FOR THE						
/ORKS SPECIFIC TO THIS SITE, SUBJECT TO THE FULL PAYMENT OF THE ARCHITECT'S FEES ND COMPLIANCE WITH THE TERMS AND CONDITIONS OF THE CLIENT/ARCHITECT AGREEMENT						
OR THIS PROJECT. FIGURED DIMENSIONS SHALL BE USED. <u>DO NOT SCALE THE DRAWING</u> . THE ONTRACTOR SHALL VERIFY ALL DIMENSIONS ON SITE PRIOR TO THE COMMENCEMENT OF						
/ORK.						
	P2	10.04.2024	RESPONSE TO COUNCIL RFI	DO'D		
	P1	28.11.2023	ISSUED FOR APPROVAL	DO'D		
TORATINOVAL	ISSUE	DATE	DESCRIPTION	ISSUED BY ISSUE DATE	DESCRIPTION	ISSUED BY
:\Users\Manuel\Documents\BAS220111 Grainger Medical Kingswood 10/04/2024 12:37:32 PM	I	I	1		I	1

CLIENT AXIS TRUST

ARCHITECT BELL Architecture Matt Bell Nominated Architect NSW 9666 Level 4, Suite 4.04, 157 Walker Street (PO Box 1037) North Sydney NSW 2060 P +61 2 7254 4861 E sydney@bellarc.com.au W www.bellarc.com.au

JOB TITLE AXIS T KINGS
JOB NO BAS22

33L

DRAWING REGISTRY

SHEET NO.	SHEET NAME

(0001	COVER SHEET AND DRAWING
(0101	3D IMPRESSION SHEET 1
(1101	EXISTING SITE AND DEMOLITION PLAN
(1102	SITE PLAN
<1103	LANDSCAPE PLANS
K 1104	LANDSCAPE SCHEDULE
(1105	LANDSCAPE PLANTING SECTION
	DETAILS
<2201	GROUND LEVEL FLOOR PLAN
<2202	LEVEL 1 FLOOR PLAN AND ROOF PLAN
(3101	ELEVATIONS - SHEET 1
K 3102	ELEVATIONS - SHEET 2
<4101	OVERALL SECTIONS
(5101	SHADOW DIAGRAMS

AXIS TRUST MEDICAL CONSULTING ROOMS DEVELOPMENT	COVER SHEET AND DRAWING
KINGSWOOD, NSW	REGISTRY

OB NO	DRAWING SCALE @ A1	DRAWN BY	DRAWING NO	REVISION
BAS220111		JH	SK0001	P2

		ORIENTATION	CLIENT AXIS TRUST		JOB AX KII
DESCRIPTION	ISSUED BY	TRUE	ARCHITECT BELL Architecture Matt Bell Nominated Architect NSW 9666 Level 4. Suite 4.04, 157 Walker Street (PO Box 1037) North Sydney NSW 2060, P, +61.2,7254,4861, F, sydney@bellarc.com.au, W, www.bellarc.com.au	B≡LL	JOB BA

EXISTING TREES TO BE DEMOLISHED

DEMOLISH THE EXISTING BRICK BUILDING WITH A TILED ROOF AND SUSPENDED SLAB FLOOR, DWARF WALLS/BRICK PIERS, FOOTINGS, INTERNAL FRAMED WALLS, AND FIXTURES AND FITTINGS, AND THE ASSOCIATED EXTERNAL RAMP, PORCH AND STAIRS EXISTING SHADE SAIL, ALONG WITH ASSOCIATED COLUMNS TO BE DEMOLISHED EXISTING BITUMEN CROSSOVER TO BE DEMOLISHED

OUTLINE OF THE EXISTING STRUCTURES AND FENCING, AND THE

L_¥___¥__]

DEMOLISH THE EXISTING LANDSCAPE

EXTENT OF THE LANDSCAPE TO BE DEMOLISHED

SURVEY THE UNDERLAID SURVEY WAS PREPARED BY FREEBURN SURVEYING: MATTHEW FREEBURN (LAND, ENGINEERING & MINING SURVEYOR), 12/09/2022. REFER TO DRAWING 38194 DETAIL, **REVISION 02**

AXIS TRUST MEDICAL CONSULTING ROOMS DEVELOPMENT (INGSWOOD, NSW					DRAWING TITLE EXISTING SITE AND DE PLAN	EMOLITION		
Or	m	2m	4m	6m	8m	10m		
ов NO 8AS22	0111	DRAWING SCALE (1 : 100	@ A1		DRAWN BY ST		drawing no SK1101	REVISION

	ORIENTATION	CLIENT AXIS TRUST	JOB TITLE AXIS TRUST I KINGSWOOD	MEDICAL CONSULTING ROOM , NSW 2m 4m 6m	MS DEVELOPMENT	DRAWING TITLE	
DESCRIPTION		ARCHITECT BELL Architecture Matt Bell Nominated Architect NSW 9666		DRAWING SCALE @ A1	DRAWN BY	DRAWING NO	

LEGEND

FL	ABOVE FLOOR LEVEL
HD	AUSTRALIAN HEIGHT DATUM
OL	COLUMN
.0.S	CHECK ON SITE
J	EXPRESSED JOINT
CL	FINISHED CEILING LEVEL
FL	FINISHED FLOOR LEVEL
FL	GROUND FLOOR LEVEL FLOOR
J	PANEL JOINT
LD	SLIDING PANEL OF A DOOR OR WINDOW

EXISTING ON STREET LINE MARKING

NEW STREET TREE, AS PER THE LANDSCAPE ✓ PLAN

FLUSH CONCRETE EDGE TO LANDSCAPE BEDS WITHIN THE CAR PARK, TYPICAL

FENCING SHALL BE MAINTAINED IN ACCORDANCE WITH TNSW REQUIREMENTS FOR SIGHT LINES FOR EXITING VEHICLES, WITHIN THE DETAILED RED HATCHED ZONE. REFER ALSO TO THE TRAFFIC CONSULTANT'S DETAILS

REFER TO THE LANDSCAPE PLAN SK1103 FOR THE AS/NZS 2890.1, FIGURE 5.2, 'DESIGN ENVELOPE AROUND PARKED VEHICLE' OVERLAY - 1,800mm HIGH TIMBER LAP AND CAP FENCE

> COUNCIL CAR PARK

PRPOSED LANDSCAPING EXTENT INCLUDING IRRIGATION, AS DETAILED ON THE LANDSCAPE PLAN. REFER ALSO TO THE IRRIGATION SYSTEM NOTES BELOW

EXISTING VERGE LANDSCAPING EXTENT, UNLESS NOTED OTHERWISE

GENERAL SITE PLAN NOTES:

- 1. ACCESS TO BUILDINGS AND CAR PARKS TO COMPLY WITH AS 1428, PARTS 1, 2 & 4
- 2. ALL ON SITE CAR PARKING TO COMPLY WITH AS/ANZ 2890.1 AND 2890.6

AREA SCHEDULE (OVERALL)
AREA NAME	AREA
GROUND FLOOR	179 m ²
LEVEL 1	422 m ²
LEVEL 2 (OUTDOOR SPACE)	212 m ²
SITE - LANDSCAPING	39 m²
SITE - PAVEMENT (AT GROUND LEVEL)	503 m ²
TOTAL SITE	732 m ²

PARKING SCHEDULE	
LIGHT VEHICLE PARKING SPACES	QUANTITY
CAR PARKING DISABLED PERSON: 5,400 x 2,600mm CAR PARKING: 5,400 x 2,600mm (90°)	1 17
TOTAL	18

LEGEND - DRAWING			
CODE	DESCRIPTION		
BIKE	BICYCLE RACK		
BIN1	140L WASTE BIN (2 WHEELS)		
BIN2	240L WASTE BIN (2 WHEELS)		
BIN6	660L WASTE BIN (4 WHEELS)		
BOL	BOLLARD 1,100mm NOM. HIGH		
COL	STRUCTURAL COLUMN, TO STRUCTURAL ENGINEER'S DETAILS		
GD	GRATED DRAIN, REFER TO CIVIL ENGINEER'S DRAWINGS FOR DETAILS		
LK1	4 TIER LOCKER		
LM1	100mm WIDE PAINTED LINE MARKING, COLOUR WHITE. REFER TO THE TRAFFIC ENGINEER'S DETAILS		
LM1(E)	100mm NOM. WIDE PAINTED EXISTING LINE MARKING, COLOUR WHITE, TO BE RETAINED		
LM2	360mm WIDE PAINTED LINE MARKING, COLOUR WHITE - STOP LINE. REFER TO THE TRAFFIC ENGINEER'S DETAILS		
LM3	100mm WIDE PAINTED LINE MARKING, COLOUR SAFETY YELLOW. REFER TO THE TRAFFIC ENGINEER'S DETAILS		
LM6	LINE MARKING, PAINTED ROADWAY SYMBOL, COLOUR WHITE, REFER TO THE TRAFFIC ENGINEER'S DETAILS		
RWT	RAIN WATER TANK, TO HYDRAULIC SERVICE'S DETAILS		
SBA1	SAFETY BARRIER, TYPE 1 (W-RAIL, SINGLE HEIGHT)		
SW PIT	STORMWATER PIT, REFER TO CIVIL ENGINEER'S DRAWINGS FOR DETAILS		
WS	WHEEL STOP, LIGHT VEHICLE		

WC		

FINISH	COLOUR
DERED FINISH	SANDSTONE
JBULAR STEEL, SPEAR TOP ERCOAT FINISH	CHARCOAL (TO MATCH COLORBOND MONUMENT)
SHALL BE IN ACCORDANCE WITH EDESTRIAN FENCING TO LINES FOR EXITING VEHICLES)	
	NATURAL
OND FINISH	COLORBOND MONUMENT
OND FINISH	COLORBOND SHALE GREY
ANDSCAPE PLANTING SCHEDULE 1103	-
D PAVERS 60mm (600mm x 400mm x 60mm H) ERIES	URBAN (OFF WHITE WITH VISIBLE AGGREGATE)
CONCRETE PAVER	CYPRUS (OFF WHITE WITH

THE SCHEDU	JLE IS TO BE READ WITH THE D	E DETAILED PLANTING SCHEDULE ON DRAWING SK1104						
TYPE	SYMBOL	BOTANIC NAME	COMMON NAME					
STREET TREE		LOPHOSTEMON CONFERTUS	BRUSH BOX					
TREES		HYMENOSPORUM FLAVUM	NATIVE FRANGIPANI					
		TRISTANIOPSIS LAURINA KANOOKA	WATER GUM					
		ULMUS PARVIFOLIA	CHINESE ELM					
HEDGES		ACMENA SMITHII MINOR	DWARF LILLY PILLY					
GRASSES AND LOW PLANTING	\bigotimes	Lomandra Longifolia	TANIKA					
	Ø	HYMENOSPORUM FLAVUM 'GOLD NUGGET'	DWARF NATIVE FRANGIPANI					
	Ø	CHEILANTHES SIEBERI	MULGA FERN					
	Ŷ	SCHOENOPLECTUS VALIDUS	RIVER CLUB- RUSH					
	\bigotimes	JUNCUS USITATUS	COMMON RUSH					
	Ŷ	SCAEVOLA AEMULA	FAIRY FAN					
GROUND COVER	ALCOLOGICAL STATE	DICHONDRA REPENS	SILVER FALLS					
CLIMBING	Ŷ	HARDENBERGIA VIOLACEA	HAPPY WANDERER					
ARTIFICIAL TURF	TURF		ROYAL GRASS® BLOOM					

PLANTING SELECTIONS SCHEDULE

IOB TITL AXIS KINC	E S TRUST M GSWOOD,	IEDICAL CO	PMENT	DRAWING TITLE				
	0m	2m	4m	6m	8m	10m		
IOB NO		DRAWING SCALE @	⊉ A1		DRAWN BY		DRAWING NO	REVISION

CP

P2

SK1103

APPENDIX E

Bore and Test pit logs

NED CONSULTING

		EO	NEO Consulting 186 Riverstone Parade, Riverstone NSW 2765, Australia Phone: 61 455 485 502						Geotechnical Log - Testpit TP1						
UTM Easting Northing Ground Total De	UTM : 56H Easting (m) : 288,471.01 Northing (m) : 6,262,161.49 Ground Elevation : Not Surveyed Total Depth : 0.6 m BGL		Excavator : Shovel ,471.01 Excavator Supplier ;2,161.49 Logged By : Ehsan Zare Surveyed Reviewed By : n BGL Date : 12/07/2024		: Shovel plier : : Ehsan Zare : : 12/07/2024	Job Number Client Project Location Loc Comment	: N09489 : NA : 45 Orth Street, Kingswood NSW 2747 : 45 Orth Street, Kingswood NSW 2747 nt :								
Water	Depth (m)	Soil Origin	Graphic Log	Classification Code	Weathering	Material Description			Moisture	Consistency/Density	Samples				
	- 0 <u>.0.</u>	Fill Topsoil		CL		Fill GRAVEL GP: very loose, grey, coa Topsoil Silty to sandy CLAY CL: soft, low plasticity, sand, trace fine sized gravel, organic,	rse sized, dry. dark brown, fine grained slightly moist.		SLM	S					
	<u>0.</u>	5 Natural		CL-CI		Natural Silty to sandy CLAY CL-CI: soft, low to me brown, fine grained sand, trace fine sized gravel, i	dium plasticity, reddish norganic, slightly moist.								
	- 1														
	- 2														

NEO

186 Riverstone Parade, Riverstone NSW 2765, Australia Phone: 61 455 485 502

Geotechnical Log - Testpit

UTM	:	56H		Exca	vator	: Shovel	Job Number	: N0	9489			
Easting ((m) :	288,480.2	5	Exca	avator Sup	plier :	Client	: NA				
Northing	(m)	: 6 262 159 35 Logged By			ned By	: Ehsan Zare	Project	· 45	Orth Stree	t Kingswo	od NSW 2747	
Ground I	Elevation :	Not Surve	ved	Revi	ewed By		Location	· 45	Orth Stree	t Kingswo	od NSW 2747	
Total Der	nth ·	0.6 m BGI	,	Date		: 12/07/2024	Loc Comment		0.0.00	, , go i re		
Total De				Dute		. 12/0//2024	Loc ooninien	•••			Samples	
				ode		tion				Isity	Gamples	
	Ê	gin	Log	u u	ing	cri			Le	/Der		
Vate	oth (Ōri	hic	catic	the	Des			oistu	ncy		딭
>	Del	Soi	Brap	sific	Wea	Lial			Mc	siste		
			0	Clas		Mate				Cons		
	0 <u>.02</u>											
						Fill GRAVEL GP: very loose, grey, coarse s	ized, dry.					
		ropson		UL		sand, trace fine sized gravel, organic, slight	ly moist.		SLM	5		
	-											
	0.5											
		Natural		CL-CI		Natural Silty to sandy CLAY CL-CI: soft, low to medium	plasticity, reddish					
						brown, nne granied sand, trace nne sized gravel, morga	mic, siignuy moist.					
						TP2 Terminated at 0.6m	1					
	-											
	— 1											
	_											
	-											
	-											
	2											
	<u>.</u>											
	-											
	-											

NEO

NEO Consulting

186 Riverstone Parade, Riverstone NSW 2765, Australia Phone: 61 455 485 502

Geotechnical Log - Borehole

UTM Easting (: m)	56H 288.472.4	I Drill Rig 8,472.47 Driller Supplier		Rig er Supplier	ig : Flight Auger Job Number Supplier : Client			: N09489 : NA				
Northing	(m)	(m) : 6,262,151.38 Logged By : Ehsan Zare Project : 45 Orth Street, Kingswood NSW 2747						od NSW 2747					
Ground E	Elevation :	Not Surve	yed	Revi	ewed By	:	Location	: 45	Orth Stree	t, Kingswo	od NSW 2747		
Total Dep	oth :	0.6 m BGL		Date		: 12/07/2024	Loc Comment	t :					
				ode		li				sity	Samples		
L.	(ш	igin	: Log	on C	aring	scrip			arre	//Den		_	
Wate	epth	oil Or	aphic	ficati	eathe	alDee			Aoistı	tency		OIA	
	Ω	Š	G	lassi	Ň	ateri			~	onsis			
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0		2				ŭ			
		Non-Soil		CCT		Concrete			D				
	0.15												
		Topsoil		CL		Topsoil Silty to sandy CLAY CL: soft, low plasticity, dark brow sand, trace fine sized gravel, organic, slightly m	n, fine grained		SLM	S			
	-												
	0.5	Natural	//////	CL-CI		Natural Silty to sandy CLAY CL-CI: soft, low to medium pla	sticity, reddish						
						brown, fine grained sand, trace fine sized gravel, inorganic,	slightly moist.						
						TP3 Terminated at 0.6m							
	-												
	<u> </u>												
	-												
	-												
	-												
	2												
	_												
	_												
	-												

NEO

186 Riverstone Parade, Riverstone NSW 2765, Australia Phone: 61 455 485 502

#### Geotechnical Log - Testpit

UTM	:	56H		Exca	vator	: Shovel	Job Number	: N09	9489			
Easting (	m)	288,463.6	288,463.67		vator Sup	blier :	Client	: NA	NA			
Northing	(m)	: 6,262,139.06 Logged By				.ogged By : Ehsan Zare Project : 45 Orth Street, Kingswood NSW 2747						
Ground I	Elevation :	Not Surve	yed	Revi	ewed By	: Location : 45 Orth Street, Kingswood N				od NSW 2747		
Total Dep	oth :	0.6 m BGL		Date		: 12/07/2024	Loc Commen	t :				
				de		ю				ity	Samples	
	Ê	. <u>=</u>	bo.	U Co	bu	ripti			9	Dens		
ater	th (r	Orig	hic L	atior	theri	Oesc			stur	1cy/I		₽
~	Dep	Soil	èrap	sific	Weat	ria			Mo	iste		-
			0	Clas	-	Mate				Cons		
		Tenneil		0					01.14	0		
		Topson		CL		sand, trace fine sized gravel, organic, slightly i	noist.		SLIM	5		
	_											
	0.5											
		Natural	//////	CL-CI		Natural Silty to sandy CLAY CL-CI: soft, low to medium pl	asticity, reddish					
						brown, fine grained sand, trace fine sized gravel, inorganic	c, slightly moist.					
						TP4 Terminated at 0.6m						
	_											
	<u> </u>											
	-											
	_											
	2											
	-											
	-											
	-											

NEO

186 Riverstone Parade, Riverstone NSW 2765, Australia Phone: 61 455 485 502

#### Geotechnical Log - Testpit

	consor																
υтм	:	56H		Exca	vator	: Shovel	Job Number	: N09	9489								
Easting (	m) :	: 288,474.67 Exca				288,474.67 Excavator Supplie			vator Sup	plier :	Client	: NA	NA				
Northing	(m) :	: 6,262,136.46 Logged By : Ehsan Zare Project : 45 Orth Street, Kingswood NSW 2747				od NSW 2747											
Ground I	Elevation :	Not Surve	yed	Revi	ewed By	:	Location	: 45	Orth Stree	t, Kingswo	ood NSW 2747						
Total Dep	oth :	0.6 m BGL	-	Date		: 12/07/2024	Loc Comment	::									
				ge		<u>n</u>				sity	Samples						
	Ê	n	Log	u Co	ing	cript			e	Den:							
/ater	oth (i	Oriç	hic I	atio	ther	Deso			istur	ncy/		e					
>	Del	Soil	Grap	sific	Wea	arial			Mo	siste							
			-	Clas		Mat				Con							
		Topsoil		CI		Topsoil Silty to sandy CLAY CL: soft low plasticity dark brow	n fine grained		SLM	s							
		Topson		ŰL.		sand, trace fine sized gravel, organic, slightly m	oist.		OLIN	Ũ							
	_																
	0.5																
		Natural	/////	CL-CI		Natural Silty to sandy CLAY CL-CI: soft, low to medium pla	sticity, reddish										
						brown, fine grained sand, trace fine sized gravel, inorganic,	slightly moist.										
						TP5 Terminated at 0.6m											
	-																
	<u> </u>																
	-																
	-																
	_																
	2																
	-																
	_																
	-																

NEO

186 Riverstone Parade, Riverstone NSW 2765, Australia Phone: 61 455 485 502

#### Geotechnical Log - Testpit

υтм	:	56H		Exca	avator	: Shovel	Job Number	: N0	9489			
Easting (	m)	288,466.14	4	Exca	vator Sup	plier :	Client	: NA				
Northing	(m)	: 6,262,123.16 Logged By			ged By	: Ehsan Zare	Project	: 45	Orth Stree	t, Kingswo	od NSW 2747	
Ground I	Elevation :	Not Surve	t Surveyed Reviewed By : Location					: 45	Orth Stree	t, Kingswo	od NSW 2747	
Total Dep	oth :	0.6 m BGL	-	Date		: 12/07/2024	Loc Comment	t :				
				qe		LO L				sity	Samples	
	Ê	lin	fog	u Co	bu	cripti			ø	Dens		
/ater	oth (i	Orić	hic I	atio	ther	Des			istur	ncy/		e
>	Del	Soil	Grap	sific	Wea	arial			Mo	siste		
			Ū	Clas		Mate				Cons		
		Topcoil		CI		Topool Silty to condy CLAV CL coff low placticity dark brow	up fine grained		SLM	e		
		Topson		UL.		sand, trace fine sized gravel, organic, slightly moist, pla	ant rootlets.		SLIVI	3		
	-											
	0.5											
		Natural		CL-CI		Natural Silty to sandy CLAY CL-CI: soft, low to medium pla	sticity, reddish					
						brown, nine grained sand, trace nine sized graver, morganic	, siignuy moisi.					
						TP6 Terminated at 0.6m						
	-											
	<u> </u>											
	_											
	-											
	-											
	2											
	_											
	-											
	-											